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Abstract. We introduce coordinates on the space of Lagrangian dec-
orated and framed representations of the fundamental group of a sur-
face with punctures into the symplectic group Sp(2n,R). These coordi-
nates provide a non-commutative generalization of the parametrizations
of the spaces of representations into SL(2,R) given by Thurston, Pen-
ner, and Fock–Goncharov. With these coordinates, the space of framed
symplectic representations provides a geometric realization of the non-
commutative cluster algebras introduced by Berenstein–Retakh. The
locus of positive coordinates maps to the space of decorated maximal
representations. We use this to determine the homotopy type of the
space of decorated maximal representations, and its homeomorphism
type when n = 2.
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1. Introduction

In their seminal paper [10], Fock and Goncharov introduced a pair of
moduli spaces, the X -space and the A-space, which are closely related to
the variety of representations of the fundamental group of a surface Sg,k of
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genus g with n-punctures into a split real simple Lie group G. They in-
troduced explicit cluster X -coordinates and A-coordinates associated to an
ideal triangulation of Sg,k on these spaces. Changing the triangulation, the
coordinates change by positive rational functions. Thus the locus of posi-
tive coordinates is independent of the choice of triangulation. When G is
SL(2,R), the positive locus in the X -space is closely related to the Teich-
müller space, and the positive locus in the A-space to the decorated Teich-
müller space of Sg,k, and the Fock–Goncharov coordinates are extensions of
Thurston’s shear coordinates, respectively Penner’s λ-lengths. When G is a
split real group of higher rank, these moduli spaces give higher Teichmüller
spaces, and the positive locus of the X -space is closely related to the Hitchin
component in the representation variety.

The set of positive representations of Fock–Goncharov and the Hitchin
components account only for one family of higher Teichmüller spaces, another
family is given by maximal representations into Lie groups of Hermitian
type. The symplectic groups Sp(2n,R) form essentially the only family of
Lie groups that are both split real forms and of Hermitian type. In this
article we generalize the work of Fock–Goncharov in the following way. We
introduce two new moduli spaces, an X -space and A-space of representations
of the fundamental group of Sg,k into the symplectic group Sp(2n,R), and
describe non-commutative A1-type cluster coordinates on them. We show,
on the one hand, that the positive locus of the X -space corresponds precisely
to maximal representations into Sp(2n,R); we use this to determine the
homotopy type of the space of maximal representations, and for Sp(4,R)
also its homeomorphism type. On the other hand, we show that the A-
space gives a geometric realization of the non-commutative cluster algebras
introduced by Berenstein and Retakh [2].

In Fock–Goncharov’s work, an important role is played by Lusztig’s total
positivity, in our work, a similar role is played by positivity related to the
Maslov index. As such, our work fits well in the framework of Θ-positivity,
recently introduced by Guichard and Wienhard [13–15,22], that generalizes
Lusztig’s total positivity and provides a unifying framework for the differ-
ent higher Teichmüller spaces. In work in progress, we are extending the
construction to more general Lie groups admitting a Θ-positive structure.

When the Fock–Goncharov approach is applied to the group Sp(2n,R),
they define a positive locus in the space of symplectic representations. It is
important to remark that the positive locus that our approach gives in the
space of symplectic representations is larger than the Fock–Goncharov’s one
(see Section 4.6 for more details). This is because the two theories are based
on two different Θ-positive structures on Sp(2n,R): respectively the one
for split groups and the one for groups of Hermitian type. The perspective
chosen in the present paper is the one which is suitable for describing the
spaces of maximal representations.

We now describe our results in more detail.
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1.1. The pair of moduli spaces. We introduce two moduli spaces,
the space of decorated symplectic representations (i.e. a representation
π1(Sg,k) → Sp(2n,R) together with a consistent choice of Lagrangian sub-
spaces, which are fixed by peripheral elements in π1(Sg,k)) which serves
as our X -space, and the space of framed symplectic representation (i.e.
π1(Sg,k)→ Sp(2n,R) together with a consistent choice of framed Lagrangian
subspaces, i.e. a Lagrangian together with a basis, which are fixed by periph-
eral elements in π1(Sg,k)) which serves as our A-space.

Fixing an ideal triangulation T of Sg,k, we introduce systems of X -
coordinates, using invariant of triples, 4-tuples, and 5-tuples of Lagrangian
subspaces. A system of X -coordinates consists of a triangle invariant for
each triangle, which is given by the Maslov index of the three Lagrangians
associated to the vertices of the triangle, an edge invariant for every edge
of the triangulation, which can be seen as a cross-ratio function of four La-
grangians, and an angle invariant, associated to each corner of a triangle,
which comes from an invariant of 5-tuples of Lagrangians. We then describe
in detail a map denoted by rep from the set X (T ) of X -coordinates to the
space of decorated representations. A special role is played by the set X+(T )
of positive X -coordinates, those for which the triangle invariants are equal
to n, the edge invariants are just n-tuples of positive real numbers, and the
angle invariants take values in O(n).

Theorem 1.1. The map rep induces a proper surjection with generically
finite fibers from X+(T ) to the space of decorated maximal representations

Maximal representations into Lie groups of Hermitian type have been
introduced in [7], and further studied in [6, 21]. All maximal representation
are discrete embeddings, and spaces of maximal representations are examples
of higher Teichmüller spaces.

Let us emphasize that the correspondence between positive X -coordinates
and decorated maximal representations is not a one-to-one. To every
decorated maximal representation corresponds a system of positive X -
coordinates, but in general only the edge invariants are uniquely determined,
the angle invariants involve some choices. We also explicitly describe the
fibers of the map rep (Proposition 4.8 and Theorem 6.18) .

The X -coordinates are more geometric, and can be used to determine
the topology of the space of maximal representations, but they do not have
nice algebraic properties. For example, we did not include in this paper
the explicit formulas for the change of coordinates of X -coordinates under
a flip of the triangulation as they involve some unpleasant operations such
as diagonalizing symmetric matrices. The A-coordinates have better and
cleaner algebraic properties.

To define the A-coordinates on the space of framed symplectic represen-
tations, we introduce the symplectic Λ-length, which is a (complete) in-
variant of pairs of framed Lagrangians. Let ω denote the symplectic form,
and let (Le, e) (Lf , f) be a pair of transverse framed Lagrangians, where
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e = (e1, . . . , en) is a basis of Le and f = (f1, . . . , fn) a basis of Lf , then
the symplectic Λ-length is Λe,f := (ω(ei, fj))i,j=1,...,n. It takes values in
GL(n,R), and provide a non-commutative generalization of Penner’s λ-
lengths (or rather their square roots), which are the special case when n = 1.
We show that the symplectic Λ-lengths satisfy a noncommutative analogue
of the Ptolemy-relation, as well as special triangle relations (which are triv-
ially satisfied for n = 1). These relations have been established in greater
generality for quasi-determinants in work of Berenstein and Retakh [2], and
we show that in fact the symplectic Λ-length is a quasi-determinant of a 2×2
matrix over the non-commutative ring of n × n-matrices. A system of A-
coordinates associates to every oriented edge the symplectic Λ-length of the
two framed Lagrangians at the vertices of the edge. The non-commutative
Ptolemy equation translates into an explicit formula for the changes of A-
coordinates under a flip.

Theorem 1.2. Let (L1,v1), (L2,v2), (L3,v3), (L4,v4) be four pairwise
transverse framed Lagrangian, which are the labels of the vertices of a quadri-
lateral with diagonals connecting the vertex L2 to L4 and the vertex L1 to
L3 (see Figure 1.1. Let Λi,j be the symplectic Λ-length associated to the pair
(Li,vi), (Lj ,vj), then

Λ24 = Λ23Λ−1
13 Λ14 + Λ21Λ−1

31 Λ34.

Figure 1.1.

We construct a natural map from A-coordinates to X -coordinates, which
allows us to give an explicit formula for the coordinate transformation of
a flip, making a local change of coordinates, see Lemma 2.20 and Propo-
sition 8.12. In this local change of coordinates, every edge is labeled by a
symmetric n × n matrix. When n = 1 this formula reduces to the formula
for the flip in the SL(2,R)-situation, and in general it is a non-commutative
generalization of it. This let us view the theory of symplectic representations
decorated by framed Lagrangian subspaces as a non-commutative A1-theory.
We will make this analogy even more clear for any (classical) Hermitian Lie
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group of tube type in forthcoming work, by showing that any such group
can be realized as Sp2 over a non-commutative ring.

This fits very well with the framework of Θ-positivity that is currently
being developed by Guichard–Wienhard [13–15,22]. There are four families
of Lie groups which admit a Θ-positive structure, where Θ is a subset of
the set of simple restricted roots. One is the family of split real Lie groups,
the second one is the family of Hermitian Lie groups of tube type, the third
family consists of the groups SO(p, q) with p < q, and the fourth is an ex-
ceptional family consisting of four groups which are real forms of real rank
4 of the complex simple Lie groups of type F4, E6, E7, E8. In the case of
Hermitian Lie groups of tube type, positivity is governed by a Weyl group
of type A1, giving Θ-positivity in that case the flavor of a non-commutative
A1-theory. This is precisely what is reflected in the structure of the coor-
dinates we define here. In forthcoming work we will define coordinates for
appropriately decorated representations into SO(p, q), such that the positive
locus corresponds to the set of Θ-positive representations.

1.2. Topology of the space of maximal representations. We now dis-
cuss the applications to the topology of the space of (decorated) maximal
representations. Let us point out that contrary to the space of positive rep-
resentations or the Hitchin component, which are contractible, the space of
maximal representations has non-trivial topology. In the case of maximal
representations of fundamental groups of closed surfaces, the topology of the
space of maximal representations has been studied using the theory of Higgs
bundles in [1, 5, 11, 12]. These techniques do not apply easily to the case of
maximal representations of fundamental groups of surface with punctures,
in particular since we do not fix the holonomy along peripheral curves on
the surface.

Here we rely on Theorem 1.1 and the positive locus of the X -coordinates to
determine the topology of the space of maximal representations. Note that
the positive locus of the X -coordinates does not parametrize the space of
decorated maximal representations, but maps surjectively to it. The fibers of
this surjection are complicated to describe, because they depend on the shape
of the edge invariants. However, there is a special subset of representations,
for which the edge invariants are “totally degenerate”, where we can describe
the fibers explicitly (see Section 6.5). From this, one can deduce

Theorem 1.3. The space of decorated maximal representations into
Sp(2n,R) is homotopy equivalent to O(n)2g+k−1/O(n), where the action
of O(n) is by simultaneous conjugation.

We furthermore determine the homotopy type of the space of decorated
maximal representations into any connected central extension of PSp(2n,R),
see Theorem 7.6.

As a corollary, we obtain a different proof of [21, Theorem 7.2.7] on the
number of connected components.
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Corollary 1.4. The space of maximal representations and the space of deco-
rated maximal representations into Sp(2n,R) have 22g+k−1 connected compo-
nents. The space of decorated maximal representations into PSp(2n,R) has
22g+k−1 connected components when n is even; it is connected if n is odd.

We can even determine the homeomorphism type of the space of maximal
representations.

Theorem 1.5. The space of decorated maximal representations into
Sp(2n,R) is homeomorphic to the total space of a singular fibration π : E →
∆n over the space ∆n of diagonal matrices. More precisely, E is the quotient
of the trivial bundle (where Sym+(n,R) denotes the space of positive definite
symmetric matrices)

pr2 :
(
Sym+(n,R)6g+3k−6 ×O(n)2g+k−1

)
×∆n → ∆n,

by the following equivalence relation: two elements (f,D) and (f ′, D′) are
in the same class if and only if D = D′ (= pr2(f,D)) and f and f ′ are
conjugated by an element of StabO(n)(D).

When n = 2, we analyze this fibration in more detail and show that all
connected components except one are orbifolds, one connected component
contains a non-orbifold singularity, see Section 5.2.1.

Structure of the paper: In Section 2 we introduce the invariants of La-
grangians and framed Lagrangians which are use to define coordinates. In
Section 3 we introduce the spaces of decorated and framed representations,
recall the definition and key properties of maximal representations. In Sec-
tion 4 we introduce positive X -coordinates, and construct the map to dec-
orated maximal representations. The applications for the topology of the
space of maximal representations are proven in Section 5.2.1. The general
X -coordinates are introduced in Section 6, and in Section 7 we generalize
them to representations into central extensions of PSp(2n,R). Finally, in
Section 8 we introduce A-coordinates, describe the relations to cluster alge-
bras, and give exact formulas for the coordinate changes under a flip of the
triangulation. The Appendix contains a description of the invariants of pairs
of non-degenerate symmetric bilinear forms that are used in Section 6
Acknowledgments: We thank Arkady Berenstein, Vladimir Fock,

Michael Gekhtman, Vladimir Retakh, and Michael Shapiro for helpful and
interesting discussions.

2. Invariants of Lagrangian subspaces

2.1. Lagrangian Grassmannian. We consider the symplectic vector space
(R2n, ω) where ω is the standard symplectic form on R2n, i.e.

ω(x, y) =
n∑
i=1

xiyn+i −
n∑
i=1

xn+iyi,
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for x =
∑2n

i=1 xiei, y =
∑2n

i=1 yiei where (e1, . . . , e2n) is the standard basis of
R2n. With respect to the standard basis, ω can be written as

(2.1) ω =

(
0 Id
− Id 0

)
.

Every basis of R2n such that ω, expressed in that basis, has the form (2.1) is
called a symplectic basis. We will usually write a symplectic basis as (e, f),
where e = (e1, . . . , en), f = (f1, . . . , fn), and ω(ei, fj) = δij .

We denote by Sp(2n,R) the symplectic group,

Sp(2n,R) = {g ∈ GL(2n,R) | gTωg = ω},

and by PSp(2n,R) = Sp(2n,R)/{± Id} the projective symplectic group.

Definition 2.1. A subspace L of R2n is called Lagrangian if dim(L) = n and
ω(u, v) = 0 for all u, v ∈ L. The set of all Lagrangian subspaces of (R2n, ω)
is called Lagrangian Grassmannian, we denote this set by Lag(2n,R).

Definition 2.2. A framed Lagrangian is a pair (L,v), where L ∈ Lag(2n,R)
and v is a basis of L. The set of all framed Lagrangians of (R2n, ω) is called
framed Lagrangian Grassmannian, we denote this set by Lagfr(2n,R). The
natural projection to Lag(2n,R) turns this space into a principal GL(n,R)-
bundle.

The group Sp(2n,R) acts naturally on Lag(2n,R) and Lagfr(2n,R):

g(L) := {g(x) | x ∈ L},
g(L, (v1, . . . , vn)) := (g(L), (g(v1), . . . , g(vn))).

These actions are transitive, hence the spaces Lag(2n,R) and Lagfr(2n,R)
are homogeneous spaces over the symplectic group. To better see this struc-
ture, consider the stabilizers of a point:

P = StabSp(2n,R)(L),(2.2)
U = StabSp(2n,R)((L, v)).(2.3)

The group P is a parabolic subgroup of Sp(2n,R), and U ⊂ P is its unipotent
subgroup. As homogeneous spaces, we have

Lag(2n,R) = Sp(2n,R)/P,

Lagfr(2n,R) = Sp(2n,R)/U.

Anyway, the action of Sp(2n,R) on Lag(2n,R) is not effective, it has kernel
{± Id}. The actual group of symmetries of Lag(2n,R) is the projective
symplectic group PSp(2n,R).

Definition 2.3. Two Lagrangians L1, L2 ∈ Lag(2n,R) are called transverse
if L1 ⊕ L2 = R2n.
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We now describe charts for Lag(2n,R). Since we will work in these charts
regularly, we describe them and the coordinate changes in detail. Given a
Lagrangian L∞, we denote by UL∞ the subset of Lag(2n,R) consisting of all
the Lagrangians transverse to L. This is an open dense subset of Lag(2n,R).
Fixing a Lagrangian L0 ∈ UL∞ any other Lagrangian L ∈ UL∞ is the graph
of a linear map LL0→L∞ : L0 → L∞, i.e. for each v ∈ L0, LL0→L∞(v) is the
unique element in L∞ such that v + LL0→L∞(v) ∈ L. So we define If L is
also transverse to L0, this map, which we denote just by L if there is no
danger of confusion, is a linear isomorphism.

We will often use an explicit matrix expression for this linear map. If
we choose e = (e1, . . . , en) a basis of L0, there exists a unique basis f =
(f1, . . . , fn) of L∞ such that (e, f) is a symplectic basis. Given a symplectic
basis (e, f) will more generally write then

Le := Span(e),

Lf := Span(f).

We write [LLe→Lf ]e,f for the matrix of the map LLe→Lf with respect to the
bases e, f. It is easy to check that this matrix is symmetric. The linear map
L and its matrix [LLe→Lf ]e,f will be used often in this paper.

We thus have a map

Ψ(e,f) : ULf 3 L→ [LLe→Lf ]e,f ∈ Sym(n,R)

This map is a homeomorphism to the vector space of symmetric matrices.
To see that it is invertible, the inverse map is given by the formula

Le,f(A) := L = Span(e + fA)

The set
{(ULf ,Ψ(e,f)) | (e, f) symplectic basis }

is a manifold atlas for the space Lag(2n,R).

Remark 2.4. We can write the transition functions of this atlas. Assume
(e, f) and (e′, f′) are two symplectic bases. There is a unique symplectic
matrix B ∈ Sp(2n,R) such that (e′, f′) := (e, f)B−1. Write B as

B =

(
B11 B12

B21 B22

)
∈ Sp(2n,R),

where the Bij are n× n matrices. For every L ∈ ULf
∩ ULf ′ , denote by

A := Ψ(e,f)(L)

A′ := Ψ(e′,f′)(L)

Then

(2.4) A′ = (B11 +B12A)−1(B21 +B22A) ∈ Sym(n,R).
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Remark 2.5. Formula (2.4) also represents the action of the matrix B on
Lag(2n,R), when restricted to a coordinate chart ULf

: for a Lagrangian L
such that both L,B(L) ∈ ULf

,

A := Ψ(e,f)(L)

AB := Ψ(e,f)(B(L))

we have
AB = (B11 +B12A)−1(B21 +B22A) ∈ Sym(n,R).

In fact the action of Sp(2n,R) on Lag(2n,R) is formally similar to the action
by Möbius transformations of SL(2,R) on CP1 (which is the case n = 1).

The action of Sp(2n,R) on pairs of transverse Lagrangians is transitive,
but the action of Sp(2n,R) on triples, quadruples and 5-tuples of pairwise
transverse Lagrangians is not transitive any more. We will now describe
invariants of such tuples of Lagrangians, which will lie the foundation for
the rest of the paper.

Similarly, the action of Sp(2n,R) on pairs ((L, v), L′), where (L, v) ∈
Lagfr(2n,R), L′ ∈ Lag(2n,R) and L,L′ are transverse, is transitive and
free. But when we consider pairs (L, v), (L′, v′) ∈ Lagfr(2n,R), the action
is not transitive any more, and we describe invariants of such pairs.

2.2. Maslov index. In this section we review properties of the Maslov index
of three pairwise transverse Lagrangians, for a more general discussion we
refer the reader to [18].

Let L1, L2, L3 be three pairwise transverse Lagrangians. As in the previous
section, we consider the linear map L3L1→L2 . When this does not cause
confusion, we will denote the linear map just by L3.

Using the symplectic form ω, we can define a bilinear form β3 on L1 in
the following way: for v1, v2 ∈ L1

β3(v1, v2) := ω(v1, L3(v2)).

We also denote the bilinear form β3 by [L1, L3, L2].

Proposition 2.6. The bilinear form β3 = [L1, L3, L2] is non degenerate and
symmetric.

Proof. Since L3(v) + v ∈ L3 for all v ∈ V1,

0 = ω(L3v + v, L3w + w) = ω(L3v, w) + ω(v, L3w).

Therefore,

β3(v, w) = ω(v, L3w) = −ω(L3v, w) = ω(w,L3v) = β3(w, v)

The form β3 is non-degenerate because L3 is a linear isomorphism between
two transverse Lagrangians L1 and L2, i.e. ω|L1×L2 is non-degenerate. �
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We will denote the signature of β3 by

sgn(β3) = (p, q),

where p is the dimension of a maximal subspace of L1 on which β3 is positive
definite and q is the dimension of a maximal subspace of L1 on which β3 is
negative definite. They satisfy p + q = n. We will also sometimes express
the signature as

dsgn(β3) = p− q ∈ {−n,−n+ 2, . . . , n− 2, n}.

Definition 2.7. The Maslov index of the triple of Lagrangians (L1, L3, L2)
is the signature dsgn([L1, L3, L2]) and denoted by µ(L1, L3, L2).

For n = 1, the three Lagrangians (L1, L3, L2) correspond to distinct points
in the circle RP1. The Maslov index is 1 if the three points are cyclically
ordered, and it is −1 if they are in the reverse cyclic order.

Proposition 2.8 (Properties of Maslov index). The Maslov index
• is invariant under the action of Sp(2n,R) on Lag(2n,R);
• is anti-symmetric when two of its variables are exchanged;
• satisfies the cocycle relation, i.e. for all pairwise transverse
L1, L2, L3, L4 ∈ Lag(2n,R)

µ(L1, L2, L3)− µ(L1, L2, L4) + µ(L1, L3, L4)− µ(L2, L3, L4) = 0

• the group Sp(2n,R) acts transitively on the set of triples of pairwise
transverse Lagrangians with the same Maslov index, i.e. Sp(2n,R)-
orbits of pairwise transverse triples of Lagrangians are in 1-1 corre-
spondence with the Maslov indices.

2.3. Cross ratio. Let L1, L2, L3, L4 be four Lagrangians such that L3 and
L4 are transverse to L1 and L2. We use the linear isomorphisms L3 : L1 → L2

and L4 : L2 → L1 to introduce the map

[L1, L3, L2, L4] := L4 ◦ L3 : L1 → L1

which is a linear automorphism of L1.

Definition 2.9. The map

[L1, L3, L2, L4] : L1 → L1

is called the cross ratio of the 4-tuple of Lagrangians (L1, L3, L2, L4).

For related invariants of 4 Lagrangians, see [3, 4, 16, 20]. For n = 1, the
cross ratio is a linear map from a line to itself. This is just the multiplication
by a scalar, which is exactly the cross ratio of four lines in R2 in the classical
sense.

Proposition 2.10 (Properties of cross ratio).
• The cross ratio is equivariant under the action of Sp(2n,R) on

Lag(2n,R).
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• [L1, L3, L2, L4] = [L1, L4, L2, L3]−1;
[L1, L3, L2, L4] = L−1

3 ◦ [L2, L4, L1, L3] ◦ L3.
• The group Sp(2n,R) acts transitively on quadruples of pairwise trans-
verse Lagrangians having conjugate cross ratios, i.e. the Sp(2n,R)-
orbits of pairwise transverse quadruples of Lagrangians are in 1-1
correspondence with the conjugacy classes of cross ratios.

Proposition 2.11. The cross ratio B := [L1, L3, L2, L4] is a symmetric
linear map with respect to the bilinear forms [L1, L3, L2] and [L1, L4, L2].

Proof. Let β3 = [L1, L3, L2] and β4 = [L2, L4, L1] be a symmetric bilinear
form on L2. Let v, w ∈ L1. Then:

β3(Bv,w) = ω(L4L3v, L3w) = −ω(L3w,L4L3v) =

= −β4(L3w,L3v) = −β4(L3v, L3w) = −ω(L3v, L4L3w) =

= ω(L4L3w,L3v) = β3(Bw, v) = β3(v,Bw). �

Corollary 2.12. If [L1, L3, L2] and [L2, L4, L1] are positive definite, then
−[L1, L3, L2, L4] is diagonalizable with positive eigenvalues.

Proof. We set as before β3 = [L1, L3, L2] and β4 = [L2, L4, L1]. Let e be a
basis of L1 such that [β3]e = Id and [B]e = −diag(λ1, . . . , λn). We take the
unique basis f of L2 such that ω(e, f) = Id. Then L3(e) = f and [L3]e,f = Id.

In the basis f the bilinear form β4 is diagonal because for every two basis
vectors fi, fj

β4(fi, fj) = ω(fi, L4(fj)) = ω(L3L
−1
3 (fi), L4L3L

−1
3 (fj)) =

= ω(L3ei, Bej) = −ω(Bej , L3ei) = −β3(Bej , ei) = λiδij

Since β4 is positive definite, we have λi > 0 for all i. �

2.4. Angles. We will also make use of invariants of five Lagrangians, here
we describe it in the simplest case, when all the Maslov indices are maximal.
For the general version of this invariant, see Section 6.1. Let L1, . . . , L5

be pairwise-transverse Lagrangians, which we will think as the vertices of a
pentagon, as in Figure 2.1. Assume that

µ(L1, L3, L2) = µ(L2, L4, L1) = µ(L1, L5, L3) = n.

The bilinear forms β3 = [L1, L3, L2] and β4 = [L2, L4, L1] are positive def-
inite, therefore, by Corollary 2.12, there exists a basis e1 of L1 such that
[β3]e1 = Id and [L1, L3, L2, L4]e1 = −diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn >
0.

We can do the same for the quadruple (L3, L2, L1, L5) and find a basis g
of L3 such that the bilinear forms [L3, L2, L1]g = Id and −[L3, L2, L1, L5]g =
diag(µ1, . . . , µn) with µ1 ≥ · · · ≥ µn > 0.

We take the unique basis e2 on L1 such that ω(g, e2) = Id. In the basis
e2 of L1 we have

[β3]e2 = [L1, L2, L3]e2 = [L3, L2, L1]g = Id .
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Figure 2.1.

Let U ∈ O(n) be the change-of-basis matrix from the basis e2 to the basis
e1. We will call this matrix an inner angle in the pentagon of Lagrangians
(L1, L4, L2, L3, L5) (see Figure 2.1).

The matrix U is not uniquely defined because the bases e1 and g are not
unique. In general, U is only well defined as an element of the double coset
space Stab1 rO(n)/ Stab2, where

Stab1 := {A ∈ O(n) | Adiag(λ1, . . . , λn)AT = diag(λ1, . . . , λn)},

Stab2 := {A ∈ O(n) | Adiag(µ1, . . . , µn)AT = diag(µ1, . . . , µn)}.
We denote by [L1, L5, L3, L2, L4] the class of U in Stab1 rO(n)/ Stab2. If
bases e1 and e2 are chosen as above, we will write

U =: [L1, L5, L3, L2, L4]e1,e2 .

2.5. Symplectic Λ-lengths. In this subsection we introduce an invariant
of two transverse framed Lagrangians. Since this invariant is closely related
to Penner’s λ-lengths in the case when n = 1, we call the it the symplectic
Λ-length.

Definition 2.13. The symplectic Λ-length of a pair of two framed La-
grangians (L,v), (M,w) ∈ Lagfr(2n,R) is the n× n matrix

Λ(L,v),(M,w) := ω(v,w) = (ω(vi, wj)).

To simplify the notation, when {(Li, vi) | i ∈ I} is a set of framed La-
grangians, we will write

Λij := Λ(Li,vi),(Lj ,vj), for i, j ∈ I.

Proposition 2.14. For all (L1,v1), (L2,v2) ∈ Lagfr(2n,R), we have
(1) Λ12 = −ΛT21.
(2) L1 and L2 are transverse if and only if det Λ12 6= 0.
(3) If L1 and L2 are transverse, then

[ω]v1,v2 =

(
0 Λ12

Λ21 0

)
.
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The symplectic Λ-lengths generalize Penner’s λ-lengths for the decorated
Teichmüller space: In [19] he considers the space R3 with a symmetric bilin-
ear form b of signature (2, 1). A decorated cusp is a pair (I, w), where I ⊂ R3

is an isotropic line and w ∈ I. The λ-length of two decorated cusps (w1, I1)
and (w2, I2) is given by b(w1, w2).

Lemma 2.15. When n = 1, the symplectic Λ-length is a square root of
Penner’s λ-length

Proof. For n = 1, a pair of framed Lagrangians is given by two lines L1, L2 ⊂
R2 with a choice of vectors v1,∈ L1, v2 ∈ L2. The symplectic Λ-lengths
are ω(v1, v2) = −ω(v2, v1). The relation to Penner’s λ-length is given by
considering R3 as the space of order 2 symmetric tensors of R2, where the
bilinear form b induced by ω is symmetric of signature (2, 1). The tensor
products L1 ⊗ L1 and L2 ⊗ L2 are isotropic lines, with choice of vectors
v1 ⊗ v1 and v2 ⊗ v2. The Λ-length is

b(v1 ⊗ v1, v2 ⊗ v2) = ω(v1, v2)2.

�

2.6. Symplectic Λ-lengths and quasi-determinants.

2.6.1. Ptolemy Equation, Exchange and triangle relations. Penner’s λ-
lengths satisfy the famous Ptolemy equation. Given four isotropic
vectors w1, w2, w3, w4 in R3 in general position, b(w2, w4)b(w1, w3) =
b(w2, w3)b(w1, w4) + b(w1, w2)b(w3, w4) (see Figure 2.2). Our symplectic Λ-
lengths satisfy a non-commutative version of the Ptolemy equation. We also
call this identity the exchange relation. Moreover, they satisfy a triangle or
hexagon relation, which are trivial in Penner’s case.

Figure 2.2.

Lemma 2.16. Let (L1,v1), (L2,v2) be two transverse framed Lagrangians.
Consider a third framed Lagrangian (L3,v3), then there exist matrices
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Π1
3,Π

2
3 ∈ Mat(n× n,R) such that

v3 = v1Π1
3 + v2Π2

3.

Then
Π1

3 = Λ−1
21 Λ23, Π2

3 = Λ−1
12 Λ13.

Proof.

Λ13 = ω(v1,v3) = ω(v1,v1Π1
3 + v2Π2

3) = ω(v1,v2Π2
3) = Λ12Π2

3,

so
Λ−1

12 Λ13 = Π2
3. �

Proposition 2.17 (Ptolemy equation - Exchange relation). Let (Li,vi),
i ∈ {1, 2, 3, 4} be four pairwise transverse framed Lagrangians. Then

Λ24 = Λ23Λ−1
13 Λ14 + Λ21Λ−1

31 Λ34.

Figure 2.3.

Proof. Using Lemma 2.16, we have

Λ24 = ω(v2,v4) = ω(v1Λ−1
31 Λ32,v3Λ−1

13 Λ14) + ω(v3Λ−1
13 Λ12,v1Λ−1

31 Λ34) =

= (Λ−1
31 Λ32)TΛ13Λ−1

13 Λ14+(Λ−1
13 Λ12)TΛ31Λ−1

31 Λ34 = Λ23Λ−1
13 Λ14+Λ21Λ−1

31 Λ34.

�

Corollary 2.18 (Triangle relation).

Λ23Λ−1
13 Λ12 + Λ21Λ−1

31 Λ32 = 0,

Λ−1
32 Λ31Λ−1

21 Λ23Λ−1
13 Λ12 = −1.
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2.6.2. Relation to quasideterminants. Algebras satisfying the exchange and
triangle relations were studied in [2]. They appear there as algebras of
quasideterminants over an algebra R which is, in general, non-commutative.
More precisely, they consider the R-algebra A which is freely generated by
elements A0 = {xi, x−1

i }i∈I for some finite index set I. Given {aij | i ∈
{1, 2}, j ∈ {1, . . . , n}} ⊆ A0 for some n, a quasi-determinant is an expres-
sion

yij :=

∣∣∣∣a1i a1j

a2i a2j

∣∣∣∣ := a2j − a2ia
−1
1i a1j ∈ A.

For quasi-determinants {yij | i ∈ {1, 2}, j ∈ {1, . . . , n}}, the exchange and
triangle relations hold.

The symplectic Λ-length can be seen as quasi-determinants over the alge-
bra of n× n matrices. Let (L,v) be a framed Lagrangian. The basis v can

be represented by a n× 2n-matrix
(
v1

v2

)
in the standard symplectic basis of

(R2n, ω), where v1, v2 are n× n-matrices. We can assume that v1 is invert-
ible. With this notation, given two framed Lagrangians (L,v) and (M,w)
we can write:

Λ(L,v),(M,w) = ω(v,w) = (v1)Tw2−(v2)Tw1 = (v1)T (w2−((v1)−1)T (v2)Tw1)

Since
0 = ω(v,v) = (v1)T v2 − (v2)T v1,

((v1)−1)T (v2)T = v2(v1)−1,

we get

Λ(L,v),(M,w) = (v1)T (w2 − v2(v1)−1w1) = (v1)T

∣∣∣∣∣v1 w1

v2 w2

∣∣∣∣∣ .
In fact, later we will use symplectic Λ-lengths to introduce A-type coor-

dinates on the space of framed representations. These A-type coordinates
then provide a geometric avatar of the non-commutative cluster structure
introduced by Berenstein–Retakh [2]. This will be addressed in detail in
Section 8.4.

2.7. Symplectic Λ-lengths, Maslov index and cross-ratios. We have
seen that triples and 4-tuples of pairwise transverse Lagrangians have invari-
ants, the Maslov index and the cross ratio. If we choose bases for all of the
Lagrangian subspaces, the Maslov index and the matrix of the cross ratio
can be expressed in terms of the symplectic Λ-lengths.

Lemma 2.19. Let (Li,vi) ∈ Lagfr(2n,R), with i ∈ {1, 2, 3}, be three pair-
wise transverse framed Lagrangians. Then the matrix Λ13Λ−1

23 Λ21 is symmet-
ric and the Maslov index is given by its signature:

µ(L1, L3, L2) = dsgn(Λ13Λ−1
23 Λ21).
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Proof. The matrix Λ13Λ−1
23 Λ21 is symmetric because of the triangle relation

and the property Λij = −ΛTji.
Let v2

′ be a basis of L2 dual to v1. By Lemma 2.16, the linear map
L3 : L1 → L2 in bases (v1,v2

′) is given by the matrix Λ13Λ−1
23 Λ21. But by

definition, the Maslov index is the signature of the map L3 seen as a bilinear
form on L1. �

Lemma 2.20 (Cross ratio in terms of symplectic Λ-lengths). Let (Li,vi) ∈
Lagfr(2n,R), with i ∈ {1, 2, 3, 4}, be four pairwise transverse framed La-
grangians. Then

[L1, L2, L3, L4]v1 = Λ−1
31 Λ34Λ−1

14 Λ12Λ−1
32 Λ31 = Λ−1

41 Λ43Λ−1
23 Λ21,

where [L1, L2, L3, L4]v1 denotes the cross-ratio expressed in the basis v1.

Proof. Let w ∈ L2 then w = v2a where a = (a1, . . . , an)T . Then by
Lemma 2.16

w = v1Λ−1
31 Λ32a+ v3Λ−1

13 Λ12a,

where v1Λ−1
31 Λ32a ∈ L1, v3Λ−1

13 Λ12a ∈ L3. Therefore, the map L2 maps
v1Λ−1

31 Λ32a to v3Λ−1
13 Λ12a. If we denote b := Λ−1

31 Λ32a, then a = Λ−1
32 Λ31b

and

L2(v1b) = v3Λ−1
13 Λ12Λ−1

32 Λ31b.

Using the triangle relation we get the following:

[L2]v1,v3 = Λ−1
13 Λ12Λ−1

32 Λ31 = −Λ−1
13 Λ13Λ−1

23 Λ21 = Λ−1
23 Λ21.

We get the same for L4 : L3 → L1:

[L4]v3,v1 = Λ−1
31 Λ34Λ−1

14 Λ13 = −Λ−1
41 Λ43.

Therefore, on one hand

[L1, L2, L3, L4]v1 = Λ−1
31 Λ34Λ−1

14 Λ13Λ−1
13 Λ12Λ−1

32 Λ31 = Λ−1
31 Λ34Λ−1

14 Λ12Λ−1
32 Λ31,

on the other hand

[L1, L2, L3, L4]v1 = Λ−1
41 Λ43Λ−1

23 Λ21. �

3. Representation varieties

One goal of this article is to give a parametrization of spaces of representa-
tions of the fundamental group of a punctured surface into Sp(2n,R), which
can be viewed as a non-commutative generalization of the parametrization of
representations into SL(2,R) by Thurston and Penner coordinates. We will
in fact not directly parameterize the representation variety, but an extension
of it, which we call decorated or framed representations.
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3.1. Representation spaces. Let S be a punctured surface of genus g with
k > 0 punctures. We assume that the Euler characteristic χ(S) of S is
negative. In this case the fundamental group π1(S) of S is free with 2g +
k − 1 = |χ(S)|+ 1 ≥ 2 generators.

Definition 3.1. An element g ∈ π1(S) is called peripheral if g is freely
homotopic to a loop contained in an arbitrarily small neighborhood of a
puncture. We denote by πper1 (S) the subset of π1(S) containing all peripheral
elements. Since we consider only punctured surfaces, πper1 (S) 6= ∅.

By Hom(π1(S), G) we denote the set of all representations of the funda-
mental group π1(S) of the surface S into some Lie group G. The group G
acts on Hom(π1(S), G) by conjugation.

Definition 3.2. The quotient space

Rep(π1(S), G) := Hom(π1(S), G)/G

is called the moduli space of representations. We denote by [ρ] the class in
Rep(π1(S), G) of the representation ρ ∈ Hom(π1(S), G).

Remark 3.3. The action ofG on Hom(π1(S), G) by conjugation is not proper,
hence the quotient is, in general, not Hausdorff. The action is proper on the
subset of reductive representations, which has an Hausdorff quotient, usually
called the character variety. In this paper, it is more natural to consider the
quotient of all representations, and to deal with a quotient space which is
not Hausdorff.

Definition 3.4. A representation ρ ∈ Hom(π1(S),Sp(2n,R)) will be called
peripherally parabolic if for every g ∈ πper1 (S), the matrix ρ(g) lies in a
subgroup conjugate to P (see Formula (2.2)).

In other words, a representation is parabolic if and only if every periph-
eral element leaves invariant a Lagrangian in (R2n, ω). We will denote by
HomP (π1(S), G) the subset of Hom(π1(S), G) consisting of peripherally par-
abolic representations.

Definition 3.5. The quotient space

RepP (π1(S),Sp(2n,R)) := HomP (π1(S), Sp(2n,R))/ Sp(2n,R)

is called the moduli space of peripherally parabolic representations.

Remark 3.6. The space Rep(π1(S), G) does not depend very much on the
surface S, because it depends only on π1(S), and there are several surfaces
with the same fundamental group. For this reason, it is not easy to study this
space using topological decompositions of S. In the space RepP (π1(S), G)
however we put conditions on the peripheral elements in π1(S), and thus it
depends on and is more closely related to the topology of S.

Definition 3.7. A representation ρ ∈ Hom(π1(S),Sp(2n,R)) will be called
peripherally unipotent if for every g ∈ πper1 (S), the matrix ρ(g) lies in a
subgroup conjugate to U (see Formula (2.3)).
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In other words, a representation is peripherally unipotent if and only if
every peripheral element leaves invariant a framed Lagrangian in (R2n, ω).
We will denote by HomU (π1(S), G) the subset of Hom(π1(S), G) consisting
of peripherally unipotent representations.

Definition 3.8. The quotient space

RepU (π1(S), Sp(2n,R)) := HomU (π1(S), Sp(2n,R))/ Sp(2n,R)

is called the moduli space of peripherally unipotent representations.

3.2. Decorated representations. For a peripherally parabolic represen-
tation there might be many ways to choose the invariant Lagrangians. A
decoration is a special way to make this choice.

Definition 3.9. A decoration of ρ is a map

D : πper1 (S)→ Lag(2n,R)

satisfying the following properties:
(a) D(g) is invariant under ρ(g) for all g ∈ πper1 (S).
(b) If g1, g2 ∈ πper1 (S), h ∈ π1(S) such that hg1h

−1 = g2, then

ρ(h)(D(g1)) = D(g2).

(c) For every k ∈ Z r {0} and for every g ∈ πper1 (S),

D(g) = D(gk).

A decorated representation is a pair (ρ,D), where ρ is a representation
and D a decoration of ρ.

Remark 3.10. By properties a), b), c) of decorations, for every puncture, one
has to choose a Lagrangian for only one peripheral element going around the
puncture. Then the Lagrangians associated to the other peripheral elements
going around the same puncture are determined.

We denote by Homd(π1(S), Sp(2n,R)) the set of all decorated representa-
tions. The action of Sp(2n,R) on Hom(π1(S),Sp(2n,R)) and on Lag(2n,R)
induces an action on Homd(π1(S),Sp(2n,R)). We will study the quotient:

Definition 3.11. The quotient space

Repd(π1(S), Sp(2n,R)) := Homd(π1(S),Sp(2n,R))/Sp(2n,R)

is called the moduli space of decorated representations. We denote by [ρ,D]
the class of (ρ,D) in the moduli space of decorated representation.

Remark 3.12. We have natural surjective maps

Homd(π1(S), Sp(2n,R)) → HomP (π1(S), Sp(2n,R))
(ρ,D) 7→ ρ

.

Repd(π1(S), Sp(2n,R)) → RepP (π1(S), Sp(2n,R))
[ρ,D] 7→ [ρ]

.

These maps are generically 2nk : 1-map, where k is the number of punctures.
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3.3. Framed representations. For a unipotent representation there are
many ways to choose these invariant framed Lagrangians. A framing is a
special way to make this choice.

Definition 3.13. A framing of ρ is a map

v : πper1 (S)→ Lagfr(2n,R)

satisfying the following properties:
(a) v(g) is invariant by ρ(g) for all g ∈ πper1 (S).
(b) If g1, g2 ∈ πper1 (S), h ∈ π1(S) such that hg1h

−1 = g2, then

ρ(h)(v(g1)) = v(g2).

(c) For every k ∈ Z r {0} and for every g ∈ πper1 (S),

v(g) = v(gk)

A framed representation is a pair (ρ, v), where v is a framing of ρ.

Remark 3.14. By properties a), b), c) of a framing, for every puncture, one
has to choose a framed Lagrangian for only one peripheral element going
around the puncture. Then the framed Lagrangians associated to the other
peripheral elements going around the same puncture are determined.

We denote by Homfr(π1(S), Sp(2n,R)) the set of all framed repre-
sentations. The action of Sp(2n,R) on Hom(π1(S),Sp(2n,R)) and on
Lagfr(2n,R) induces an action on Homfr(π1(S),Sp(2n,R)). We will study
the quotient:

Definition 3.15. The quotient space

Repfr(π1(S),Sp(2n,R)) := Homfr(π1(S),Sp(2n,R))/ Sp(2n,R)

is called moduli space of framed representations. We denote by [ρ, v] the class
of the framed representation (ρ, v).

Remark 3.16. We have natural surjective maps

Homfr(π1(S), Sp(2n,R)) → HomU (π1(S), Sp(2n,R))
(ρ, v) 7→ ρ

.

Repfr(π1(S), Sp(2n,R)) → RepU (π1(S), Sp(2n,R))
[ρ, v] 7→ [ρ]

.

Remark 3.17. Every framing v of ρ induces a decoration Dv by the rule

Dv(g) := Span(v(g))

We have natural maps

Homfr(π1(S),Sp(2n,R)) → Homd(π1(S),Sp(2n,R))
(ρ, v) 7→ (ρ,Dv)

.

Repfr(π1(S),Sp(2n,R)) → Repd(π1(S), Sp(2n,R))
[ρ, v] 7→ [ρ,Dv]

.
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3.4. Transverse representations. We now fix an ideal triangulation T of
S.

Definition 3.18. We say that (ρ,D) ∈ Homd(π1(S, b), Sp(2n,R)) is trans-
verse with respect to T if the following condition holds: for every edge e of
T connecting punctures pi and pj , for every point b′ ∈ Int(e) and for every
curve γ connecting b and b′, we require that the Lagrangians D(γ ∗αi ∗ γ−1)
and D(γ ∗ αj ∗ γ−1) are transverse, where the curves αi and αj are as in
Figure 3.1.

Figure 3.1.

We denote by Homd
T (π1(S, b), Sp(2n,R)) the set of all decorated represen-

tations which are transverse with respect to the triangulation T .

Remark 3.19. The transversality property required in the previous definition
does not depend on the choice of the path γ and the base point b. Moreover,
this property is invariant under the action of Sp(2n,R), hence we can define
the quotient:

RepdT (π1(S),Sp(2n,R)) := Homd
T (π1(S, b),Sp(2n,R))/ Sp(2n,R)

Remark 3.20. For each T , the space RepdT (π1(S),Sp(2n,R)) is an open dense
subspace of Repd(π1(S),Sp(2n,R)).

Definition 3.21. We denote by RepfrT (π1(S),Sp(2n,R)) the pre-image of
RepdT (π1(S), Sp(2n,R)) under the map:

Repfr(π1(S),Sp(2n,R)) → Repd(π1(S), Sp(2n,R))
(ρ, v) 7→ (ρ,Dv)

.

Let T be a triangle of T with boundary ∂T . Using the orientation of S,
we can orient ∂T so that T is to the left from ∂T . This gives us a cyclic order
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on the vertices {p1, p2, p3} of T . We assume that (p1, p2, p3) are in positive
cyclic order.

Definition 3.22. Let [ρ,D] ∈ RepdT (π1(S), Sp(2n,R)), and consider ele-
ments g1, g2, g3 ∈ πper1 (S, b) that go around p1, p2, p3 (see Figure 3.2). We
can consider the Maslov index µT := µ(D(g1), D(g2), D(g3)). Since µ is
Sp(2n,R)-invariant, µT is a well defined invariant of [ρ,D] for each triangle
T of T . We call µT the Maslov index of the positive oriented triangle T for
[ρ,D].

Figure 3.2.

3.5. Toledo number and maximal representations. An important in-
variant for representations [ρ] ∈ Rep(π1(S),Sp(2n,R)) is the Toledo number,
here denoted by Tρ, which was defined in [7] using bounded cohomology. It
is a real number which satisfies the Milnor–Wood inequality:

−n|χ(S)| ≤ Tρ ≤ n|χ(S)|.

Moreover, for all representations [ρ] ∈ RepP (π1(S), Sp(2n,R)), this in-
variant takes only integer values. The representations where this invariant
achieves its maximum have particularly nice geometric properties, see [7].

Definition 3.23. A representation [ρ] ∈ Rep(π1(S), Sp(2n,R)) is called
maximal if Tρ = n|χ(S)|.

We denote byM(π1(S), Sp(2n,R)) the subspace of Rep(π1(S),Sp(2n,R))
consisting of all maximal representations. Similarly, we denote by
Md(π1(S),Sp(2n,R)) the subspace of Repd(π1(S), Sp(2n,R)) of all deco-
rated maximal representations, and byMd

T (π1(S),Sp(2n,R)) the subspace
of all decorated maximal representations which are transverse with respect
to a chosen triangulation T . The following facts are proven in [7].

Proposition 3.24. [7]
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(a) M(π1(S),Sp(2n,R)) ⊂ RepP (π1(S), Sp(2n,R)). In particular, the nat-
ural projection map

Md(π1(S),Sp(2n,R)) → M(π1(S),Sp(2n,R)).

is surjective.
(b) Maximal representations are transverse with respect to any ideal trian-

gulation T :
Md
T (π1(S),Sp(2n,R)) =Md(π1(S), Sp(2n,R)).

(c) All maximal representations are reductive, hence the spaces
M(π1(S),Sp(2n,R)) and Md(π1(S),Sp(2n,R)) are Hausdorff (cfr.
Remark 3.3).

Remark 3.25. A representation [ρ] ∈ Rep(π1(S),Sp(2n,R)) is called almost
maximal if Tρ > (n−1)|χ(S)| (see [9]). The Remark 3.24 (c) holds also for the
subsets of the moduli spaces consisting of all almost maximal representations.

We now show that the Toledo number of a decorated representation can
be computed easily using an ideal triangulation. In the special case of a pair
of pants the following proposition was proven in [21].

Proposition 3.26. Let T be an ideal triangulation of S and (ρ,D) ∈
Homd

T (π1(S), Sp(2n,R)). The Toledo number Tρ of ρ can be computed from
the following formula:

Tρ =
∑
T∈T

µT

where µT is the Maslov index of the positive oriented triangle T for [ρ,D].

Corollary 3.27. The number
∑

T∈T µ
T only depends on the representation.

In particular it does not depend on the choice of decoration nor on the ideal
triangulation.

The fact that
∑

T∈T µ
T does not depend on the triangulation can also be

seen directly since every two triangulations are connected by a sequence of
flips, and for a flip the statement follows from the cocycle relation of the
Maslov index (see Remark 2.8).

As a corollary of the previous proposition, we can recognize decorated
maximal representations using a triangulation:

Corollary 3.28. Given a decorated representation ρ, and an ideal triangu-
lation T of S, we have that ρ is maximal if and only if the Maslov index of
each positively oriented triangle T in T is n.

The proof of Proposition 3.26 will take the rest of this subsection. It will
use, as tools, the Souriau index and the rotation number, whose properties
we will briefly discuss.

Let G̃ be the universal covering of G := Sp(2n,R) and L̃ag(2n,R) be the
universal covering of Lag(2n,R). In [7] it is shown that G̃ acts on L̃ag(2n,R)
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in a compatible way with respect to the action of G on Lag(2n,R), i.e. for
all g̃ ∈ G̃ and for all L̃ ∈ L̃ag(2n,R):

p(g̃.L̃) = pG(g̃).p(L̃)

where p : L̃ag(2n,R) → Lag(2n,R), pG : G̃ → G are natural projections of
coverings, and by . we denote the actions of corresponding groups.

The Souriau Index is a map

m : L̃ag(2n,R)× L̃ag(2n,R)→ R

which is G̃-invariant and satisfies the following relation: for each L̃1, L̃2, L̃3 ∈
L̃ag(2n,R)

m(L̃1, L̃2) +m(L̃2, L̃3) +m(L̃3, L̃1) = µ(L1, L2, L3)

where Li = p(L̃i) for i ∈ {1, 2, 3}. See [8] and [21] for a precise definition.
We also need the rotation number R̃ot : G̃ → R, a conjugation invariant

function defined in [7] using the theory of bounded cohomology. We will
need the following properties:

Lemma 3.29 ( [21]). Let g̃ ∈ G̃, L̃ ∈ L̃ag(2n,R) and let p(L̃) ∈ Lag(2n,R)
be a fixed point of pG(g̃) ∈ G. Then

R̃ot : G̃ → R
g̃ 7→ m(g̃L̃, L̃)

Lemma 3.30 ( [7, Thm. 12]). Let ρ ∈ Hom(π1(S), Sp(2n,R)) and

π1(S) = 〈a1, b1, . . . , ag, bg, c1, . . . , ck | c1 . . .k [bg, ag] . . . [b1, a1] = 1〉

be a presentation of π1(S). Let ρ̃ ∈ Hom(π1(S), G̃) be a lift of ρ to the
universal covering G̃ of Sp(2n,R). The Toledo number of ρ can be computed
as:

Tρ = −
k∑
i=1

R̃ot(ρ̃(ci))

We are finally ready to present the

Proof of Proposition 3.26. First we fix a presentation of π1(S):

π1(S) = 〈a1, b1, . . . , ag, bg, c1, . . . , ck | c1 . . .k [bg, ag] . . . [b1, a1] = 1〉
where g is the genus of S, k is the number of punctures. We choose a lift
ρ̃ : π1(S)→ G̃. From ρ̃, we can compute Tρ using Lemma 3.30.

We can assume that ρ̃(ci) have a fixed point zi, i ≥ 2 in L̃ag(2n,R). So
R̃ot(ρ̃(ci)) = 0. This is possible since ρ(c2), . . . , ρ(ck) have fixed points in
Lag(2n,R). We also denote by y0 a lift of a fixed point of ρ(c1).

We denote for all admissible i:

Ai := ρ(ai), Ãi := ρ̃(ai),

Bi := ρ(bi), B̃i := ρ̃(bi),



NONCOMMUTATIVE COORDINATES FOR SYMPLECTIC REPRESENTATIONS 25

Ci := ρ(ci), C̃i := ρ̃(c̃i).

By induction, we denote

yi := B̃−1
i Ã−1

i B̃iÃiyi−1

for i ∈ {1, . . . , g}.
We consider a polygon model of S and the ideal triangulation as in Figure

3.3, where the vertices of the triangulation are decorated by lifted fixed
points of the corresponding peripheral elements, and the edges are marked
by letters and arrows corresponding to the generators of the fundamental
group and gluing/cutting directions.

Figure 3.3.
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To write the sum of Maslov indices, we use the Souriau index [21, 3.2]:∑
T∈T

µTρ =

g∑
i=1

(m(yi−1, Ã
−1
i B̃iÃiyi−1) +m(Ã−1

i B̃iÃiyi−1, B̃iÃiyi−1)+

+m(B̃iÃiyi−1, Ãiyi−1) +m(Ãiyi−1, B̃
−1
i Ã−1

i B̃iÃiyi−1))+

+m(yg, C̃
−1
k . . . C̃−1

3 z2)+

+

k−1∑
i=2

m(C̃−1
k . . . C̃−1

i+1zi, C̃
−1
k . . . C̃−1

i+2zi+1) +

k−1∑
i=2

m(zi+1, zi) +m(z2, y0).

Using the G̃-invariance of the Souriau index and its anti-symmetry we can
see that

m(B̃iÃiyi−1, Ãiyi−1) = m(Ã−1
i B̃iÃiyi−1, yi−1) = −m(yi−1, Ã

−1
i B̃iÃiyi−1)

m(Ã−1
i B̃iÃiyi−1, B̃iÃiyi−1) = m(B̃−1

i Ã−1
i B̃iÃiyi−1, Ãiyi−1) =

= −m(Ãiyi−1, B̃
−1
i Ã−1

i B̃iÃiyi−1).

Therefore, the first sum is equal to zero. Moreover,

m(C̃−1
k . . . C̃−1

i+1zi, C̃
−1
k . . . C̃−1

i+2zi+1) = m(C̃−1
i+1zi, zi+1) =

= m(zi, C̃i+1zi+1) = m(zi, zi+1).

Therefore, the second sum is equal to minus the third sum. So we get:∑
T∈T

µT = m(yg, C̃
−1
k . . . C̃−1

3 z2) +m(z2, y0) =

= m(yg, C̃
−1
k . . . C̃−1

3 C̃−1
2 z2) +m(z2, y0) =

= m(C̃2C̃3 . . . C̃kyg, z2) +m(z2, y0) = m(C̃−1
1 y0, z2) +m(z2, y0) =

= m(C̃−1
1 y0, y0) = R̃ot(C̃−1

1 ) = −R̃ot(C̃1) = Tρ. �

4. X -coordinates for maximal representations

In this section we introduce positive X -coordinates. They will give a
parametrization of the space of maximal representations: we restrict our
attention here to this special case because the definition is significantly sim-
pler than in the general case. The definition of general X -coordinates for
decorated representations that are not necessarily maximal will be given in
Section 6.

4.1. Ideal triangulations of surfaces. Let T be an ideal triangulation
of a punctured surface S = S̄ r P where P = {p1, . . . , pk} is the set of
punctures. We consider T as a graph T = (P,E) embedded in S̄ so that the
complement of T in S̄ is a disjoint union of triangles which we call faces or
triangles of the triangulation T . We denote by F the set of all faces of T .

The X -coordinates will in general consist face invariants, edge invariants,
and angle invariants. The face coordinates essentially come form the Maslov
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index, so they take values in a discrete set, and for positive X -coordinates,
they are all constant equal to n, so that we can suppress them. For the angle
coordinates it is important to introduce the angles of the triangulation, which
is what we do know.

For each edge e ∈ E there are up to homotopy two parametrizations
~e : [0, 1]→ e and ~e −1 : [0, 1]→ e, where ~e −1(t) = ~e(1− t). The restrictions
~e,~e −1 : (0, 1) → e r P are bijective. The choice of ~e for e ∈ E is called an
orientation of the edge e ∈ E. We denote by Eor the set of all oriented edges
of T .

The orientation of S defines maps:

r : Eor → F

l : Eor → F

which associate to an oriented edge ~e the unique face whose closure contains
this edge and which lies to the right (resp. to the left) of ~e.

Definition 4.1. An ideal triangulation T together with a chosen orientation
for every edge is called an oriented ideal triangulation.

Definition 4.2 (Positive and negative angles). The triple (~e1, ~e2, f) ∈ E2
or×

F is called a positive angle of the triangulation T if
• ~e1(1) = ~e2(0) ⊆ P ∩ f̄ ,
• l(~e1) = l(~e2) = f .

Similarly, the triple (~e1, ~e2, f) ∈ E2
or × F is called a negative angle of the

triangulation T if
• ~e1(1) = ~e2(0) ⊆ P ∩ f̄ ,
• r(~e1) = r(~e2) = f .

We denote by W+ (resp. W−) the set of all positive (resp. negative)
angles of T , and by W the set of all angles of T , i.e. W = W+ ∪W−.

For each angle w = (~e1, ~e2, f) the opposite angle is defined as:

w−1 = (~e −1
2 , ~e −1

1 , f) ∈W.

Obviously, the opposite angle of a positive angle is negative and vice versa.

Definition 4.3 (Positive triple). We call a triple of different positive angles
(w1, w2, w3) positive if

w1 = (~e1, ~e2, f), w2 = (~e2, ~e3, f), w3 = (~e3, ~e1, f)

for ~e1, ~e2, ~e3 ∈ Eor.

Obviously, the positivity of a triple of positive angles is invariant under
cyclic permutations.

For simplicity we will draw orientation of angles using arrows as on Fig-
ure 4.1
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Figure 4.1.

4.2. Positive X -coordinates. Let S be a surface with an oriented ideal
triangulation T . We use the notation introduced in Section 4.1.

Definition 4.4 (Positive X -coordinates). A system of positive X -coordinates
of rank n on (S, T ) is a map

x : E tW+ → Rn>0 tO(n)

such that
• the edge invariantx(e) for an edge e ∈ E is an n-tuple of positive
real numbers x(e) = (λ1, . . . , λn) ∈ Rn>0 with λi ≥ λi+1 ;
• the angle invariant x(w) for a positive angle w ∈ W+ is an or-
thogonal matrix x(w) ∈ O(n). The angle coordinates are subject
to the following relation: for each positive triple of positive angles
(w1, w2, w3) we require

x(w3)x(w2)x(w1) = Id .

We denote by X+(S, T , n) the set of all positive systems of X -coordinates
of rank n on (S, T ).

As a convenient notation, if x ∈ X+(S, T , n) is a system of X -coordinates
and w ∈W− is a negative angle, we will write x(w) = x(w−1)−1.

Given a system of positive X -coordinates, we can construct a decorated
transverse homomorphism of the fundamental group π1(S, b) for an appro-
priately chosen b ∈ S. We describe this procedure in two steps, first con-
structing the homomorphism and then the decoration.

For this we lift the triangulation T of S to a triangulation T̃ = (P̃ , Ẽ) of
the universal covering S̃ of S.

We define a graph Γ on the surface in the following way: in every triangle
we choose three points close to the three edges, these points will be the
vertices of the graph. The edges of Γ are segments connecting the three
points in one triangle and segments connecting the two points in neighboring
triangles that are close to the same edge of the triangulation (see Figure 4.2).
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Figure 4.2.

We assume that the base point b coincide with one of vertices of Γ. Now,
every element α ∈ π1(S, b) has a representative which is a closed simplicial
path in the graph Γ. We can write α as composition of paths

α = αk ◦ · · · ◦ α1,

where every αi is a path along one edge of Γ.
To define the representation ρ = rep+(x), we will associate to every α the

matrix
ρ(α) = Ak · · ·A1.

We introduce the following notation, if x(r) is an edge invariant, i.e. it a
an n-tuple of positive real numbers (λ1, . . . , λn) ∈ Rn>0 with λi ≥ λi+1, then
diag(x(r)) denotes the diagonal matrix whose ith-entry is λi.

Then Ai is defined as follows:
• If αi is going along an edge of Γ which crosses the oriented edge ~r of
the triangulation from the right to the left assuming that the edge ~r
is oriented upwards, we have

Ai :=

(
0 −

√
diag(x(r))√

diag(x(r))
−1

0

)
where

√
diag(x(r)) is a coordinatewise positive square root.

• If αi is going along an edge of Γ which crosses the oriented edge ~r of
the triangulation from the left to the right assuming that the edge ~r
is oriented upwards, we have

Ai := −

(
0 −

√
diag(x(r))√

diag(x(r))
−1

0

)
where

√
diag(x(r)) is a coordinatewise positive square root.
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• If αi is along an edge of Γ that follows the angle w of the triangula-
tion, consider the matrices

Û :=

(
x(w)T 0

0 x(w)T

)
,

Tr =

(
− Id Id
− Id 0

)
, Tl = (Tr)

−1.

We have Ai = TrÛ (resp. Ai = TlÛ) if when going from αi−1 to αi
we are turning to the right (resp. to the left). Notice that, Tr and Û
commute: TrÛ = ÛTr, TlÛ = ÛTl.

All the matrices Ai are symplectic, so ρ(α) ∈ Sp(2n,R). It is easy to check
that this matrix only depends on the homotopy class of α, and that the map
is a group homomorphism. In this way we constructed a representation
ρ ∈ Hom(π1(S, b),Sp(2n,R)).

We now construct a decoration D for this representation. First, consider
the case of a puncture that is a vertex of an edge of T which is close to the
basepoint b. A simple peripheral element of π1(S, b) around this puncture
can be represented by a circle c going around this puncture. Then going
around c we always are turning either to the right or to the left. Therefore,
either Le = Span(e) or Lf = Span(f) is preserved by ρ(c), where (e, f) is
the standard symplectic basis of (R2n, ω) (see Figure 4.3).

Figure 4.3.

Now we extend this definition to general punctures. First, we note that if
α is any path in the graph Γ, we write α = αk ◦ · · · ◦ α1, where every αi is
a path along one edge of Γ. The definition of the matrix ρ(α) given above
can be applied also to this path α, even if it is not closed.

Finally, for each simple peripheral curve γ around some puncture p with
start- and endpoint b, we can take a point b′ which lies in a triangle adjacent
to p. Then we can decompose γ up to homotopy into a path α from b to b′,
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circle c around p and the inverse path α−1 from b′ to b. The representation
ρ associates to this element the matrix

ρ(γ) = ρ(α−1)ρ(c)ρ(α)

We have already seen how to construct a Lagrangian L preserved by the
matrix ρ(c), we can then associate to γ the matrix D(γ) := ρ(α−1)L.

For each non-simple peripheral curve which is a power of some simple one,
we define a decoration of non-simple peripheral curve to be the decoration of
the corresponding simple curve. All other non-simple curves are of the form
γ = β−1αnβ, where α is simple closed curve, β is some closed curve. So we
define D(γ) := ρ(β).D(α).

In this way, starting from a system of X-coordinates x, we defined an
element (ρ,D) ∈ Homd

T (π1(S, b),Sp(2n,R)). We define rep+(x) := (ρ,D).

4.3. Properties of the map rep+. We now describe properties of the map
rep+ : X+(S, T , n)→ Homd

T (π1(S, b),Sp(2n,R)).
For this we introduce the notion of coordinates that are admissible with

respect to a decorated representation [ρ,D] ∈Md
T (π1(S, b),Sp(2n,R)). Note

that we can lift the decoration D to a map D̃ : P̃ → Lag(2n,R).

Definition 4.5. x ∈ X+(S, T , n) is called admissible for a maximal repre-
sentation [ρ,D] ∈Md

T (π1(S, b),Sp(2n,R)) if
• for each edge e ∈ Ẽ on the boundary of the triangles T = (t1, t3, t2)

and T ′ = (t2, t4, t1) of T̃ , the cross ratio [D̃(t1), D̃(t3), D̃(t2), D̃(t4)]
is conjugated to −diag(x(e));
• for each pentagon in T̃ as in Figure 4.4, the orthogonal matrix x(w)

belongs to the double coset [D̃(t1), D̃(t5), D̃(t3), D̃(t2), D̃(t4)].

Figure 4.4.

Remark 4.6. This definition is independent on the choice of (ρ,D) ∈ [ρ,D]

and of the lift D̃ of D.

Proposition 4.7. For every x ∈ X+(S, T , n), the image rep+(x) is a dec-
orated maximal representation , and x is admissible for the representation
rep+(x).
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Proof. A direct calculation in one triangle shows that for the decoration
constructed above each positive oriented triangle has maximal Maslov index.
Similarly, a direct calculations in a quadrilateral and in a pentagon show
admissibility of x for rep(x). �

We denote by [rep+](x) the conjugacy class of rep+(x). We just con-
structed a map

[rep+] : X+(S, T , n)→Md
T (π1(S, b),Sp(2n,R)).

This map is surjective (see Corollary 4.13) but it is not injective: some-
times changing the angle coordinates, the image representation stays the
same. We describe this ambiguity explicitly.

Figure 4.5.

Proposition 4.8. Let x ∈ X+(S, T , n). Consider two triangles adjacent by
an edge e. Let x(e) = Λ and consider the angle coordinates be defined as in
Figure 4.5. Let us change angle coordinates in the following way:

U ′1 = WU1, V
′

1 = V1W
′−1,

U ′2 = U2W
−1, V ′2 = W ′V2.

We denote by x′ the changed coordinates. Then [rep+](x) = [rep+](x′) if and
only if

W ∈ O(n) ∩O(diag(Λ)),

W ′ := D−1W TD,

D :=
√

diag Λ.

Moreover, if [rep+](x) = [rep+](x′) for some x, x′ ∈ X+(S, T , n) then
x(e) = x′(e) for all edges e and there exists a finite sequence of changing of
angle coordinates defined by formulas above which puts x(w) to x′(w) for all
angles w.
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Remark 4.9. The ambiguity in a choice of angle coordinated around an edge
e depends on how generic the tuple x(e) =: Λ is. Let λ1 > · · · > λk are
different entries of Λ with multiplicities l1, . . . , lk, then W ∈ O(l1) × · · · ×
O(lk) ≤ O(n) (diagonally embedded). In particular, for generic Λ with all
entries different, W ∈ Zn2 . On the other hand, if Λ = (λ, . . . , λ) for some
λ > 0, then W ∈ O(n).

Proposition 4.8 will be proven in Section 6 where we treat general X -
coordinates.

4.4. The set of positive X -coordinates associated to a representa-
tion. So far we only constructed a decorated maximal representation given
a system of positive X -coordinates. Now we describe how, given an ideal
triangulation, we can associate a system of positive X -coordinates to a dec-
orated maximal representation [(ρ,D)] so that [rep+(x)] = [(ρ,D)]. The
basic idea is clear, we want a system of coordinates that is admissible for
[(ρ,D)] - so essentially for each edge e of the triangulation there are two ad-
jacent triangles, whose vertices are decorated by four Lagrangian subspaces
L1, L2, L3, L4, and the edge invariant x(e) is the ordered set of eigenvalues
of the cross ratio map [L1, L2, L3, L4] : L1 → L1, and for every angle, we
have a decoration by five Lagrangians, and the angle coordinate is the an-
gle [L1, L2, L3, L4, L5], see Figure 2.1. However one has to be a bit careful
when making the precise definitions, because we do not only want the the
system of coordinates is admissible with respect to [(ρ,D)], but that more-
over that [rep+(x)] = [(ρ,D)]. And in general there are admissible system
of X -coordinates x ∈ X+(S, T , n) for [ρ,D] ∈ Md

T (π1(S, b), Sp(2n,R)) such
that [rep+](x) 6= [ρ,D].

So we take an ideal triangulation T of S and choose b0 ∈ S. Let (ρ,D) ∈
Homd

T (π1(S, b0),Sp(2n,R)) be a decorated maximal representation.
We lift the oriented triangulation T of S to the oriented triangulation T̃

of the universal covering S̃. We also fix a lift b ∈ S̃ of b0 ∈ S. Punctures
are lifted to visual boundary points of S̃ (after choice of some Riemannian
metric of finite area). Using the decoration D, each boundary point can be
decorated by a Lagrangian in a unique way. This decoration is π1(S, b0)-
equivariant.

We consider the graph Γ associated to this triangulation as in Section 4.2,
see Figure 4.2. We can assume that Γ is invariant under the action of π1(S, b0)

on S̃. First, we associate a symplectic basis to each vertex of Γ and a tuple
(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn > 0 to each edge of lifted triangulation T .

For each vertex b of Γ there is the unique edge r close to which this vertex
lies and unique triangle T in which b lies. We take an orientation of the edge ~r
such that the vertex b lies to the right from ~r. We consider the triangle, which
is adjacent to T across the edge r. Thus we have a quadrilateral decorated
by Lagrangians (L1, L3, L2, L4). Since the representation is maximal, the
bilinear form β3 := [L1, L2, L3] : L1 → L∗1 is well defined and positive definite,



34 D. ALESSANDRINI, O. GUICHARD, E. ROGOZINNIKOV, AND A. WIENHARD

and the cross ratio map F := [L1, L3, L2, L4] : L1 → L1 is well defined and
symmetric with respect to β3 with positive eigenvalues.

We say that the four tuple (L1, L2, L3, L4) is in standard position with
respect to a symplectic basis (e, f) if L1 = Le, and L2 = Lf , [L3]e,f = Id,
and [L4]e,f = −diag(λ1, . . . , λn), where [F ]e = −diag(λ1, . . . , λn).

We then define the edge invariant x(r) = x(~r) = (λ1, . . . , λn) and associate
the symplectic bases B(b) = (e, f) to the vertex b of Γ.

Because the oriented edge ~r defines the point b uniquely, sometimes we
will say that the basis B(b) is associated to the oriented edge ~r and write
B(~r).

By construction, the map x for oriented edges is π1(S, b0)-invariant, there-
fore, x is well-defined for oriented edges of triangulation T of S. Moreover,
the easy calculation shows that x(~r) = x(~r −1), therefore x(r) is well defined
and does not depend on the choice of orientation. We have to take care of
two other issues:

(1) For each oriented edge ~r of triangulation there are two vertices b1, b2
of Γ lying close to ~r. In general, there are many possibilities to define
B(b2) if B(b1) is fixed. We fix one of them, which is consistent with
the construction of the map rep+, namely with the matrix associ-
ated to the crossing of an edge. Assume ~r is oriented upwards, b1
lies to the right from ~r and b2 lies to the left. Let B(b1) =: (e, f)

then B(b2) := (−f
√

diag(λ1, . . . , λn), e
√

diag(λ1, . . . , λn)
−1

) where
x(r) = (λ1, . . . , λn).

(2) The choice of bases B is in general not unique. But it can always be
chosen in a ρ-equivariant way with respect to the action of Sp(2n,R)
on symplectic bases because the lifted decoration by Lagrangians is
ρ-equivariant. We will always assume that B is ρ-equivariant.

To define the angle coordinate, we consider a pentagon decorated by
Lagrangians as on the Figure 4.6. To each oriented diagonal ~r0 and ~r1

of this pentagon are associated bases B(~r0) =: (e0, f0) of (L1, L2) and
B(~r1) =: (e1, f1) of (L3, L1). So we can define the angle invariant x(w)
to be x(w) := [L1, L5, L3, L2, L4]e0,f1 .

Figure 4.6.
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Remark 4.10. Since the map B is ρ-equivariant, the map x for angles is
π1(S, b0)-invariant. Therefore, x is well-defined for all oriented angles of the
triangulation T of S.

Remark 4.11. Ordered tuple x(r) = (λ1, . . . , λn) for each edge r is uniquely
defined. In contrast, the matrices U for each angle are in general not uniquely
defined by the representation ρ. To define U , we have chosen a map B fixing
a symplectic basis for each oriented edge which is not unique in general.

Lemma 4.12. Let [ρ,D] ∈ Md
T (π1(S, b),Sp(2n,R)). Consider x ∈

X+(S, T , n) constructed from [ρ,D] as above. Then [rep+](x) = [ρ,D].

Proof. Notice, the bases on vertices of Γ were chosen in compatible way with
the construction of the map rep+, i.e. let b1, b2 be vertices of Γ connected by
an edge r. To r the matrix E is associated as in the previous section (going
along an angle or crossing an edge of triangulation). Then E maps the basis
B(b1) to B(b2).

Therefore, by induction, for every loop α based in b, rep+(α)(B(b)) =
B([α]b), where by [α]b we understand the action of [α] ∈ π1(S, b) on ver-
tices of Γ ⊆ S̃. But the choice of B is ρ-equivariant, i.e. rep+(α)(B(b)) =
B([α]b) = ρ(α)B(b). But the action of Sp(2n,R) on symplectic bases is ex-
act, therefore, rep+(α) = ρ(α) for all [α] ∈ π1(S, b), where ρ(α) is written as
a matrix with with respect to the basis B(b). �

Corollary 4.13. The map [rep+] is surjective.

4.5. Change of coordinates. The constructions of positive X -coordinates
depends on a choice of ideal triangulation T of S, however the representation
[rep+(x)] is independent of the triangulation. If we choose a different ideal
triangulation T ′ we get a different set of positive X -coordinates. In the work
of Fock and Goncharov, it was essential that the coordinate changes going
from one triangulation to another are given by positive rational functions,
because these implies that the set of positive representations is independent
of the triangulation used to define it. Here we know here a priori that
the image of [rep+] is independent of the triangulation, because it is the
set of maximal representations, which can be defined without reference to
any triangulation. It is of interest of interest to understand the coordinate
changes.

Since every ideal triangulation T ′ can be obtained from any other ideal
triangulation T by a sequence of flips, i.e. changing the triangulation just
by taking a quadrilateral and exchanging one diagonal for the other one, the
coordinate change of a flip is the central ingredient.

In the case of positive X -coordinates it is quite difficult to write explicit
formulas for this coordinate change. In particular the angle coordinates are
given rather implicitly. However in the case of "scalar" edge invariants. Let
x(r) = l Id then

Ũ1 = U1U2, Ṽ1 = V2V1
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Figure 4.7. Flip along “scalar” edge

W1 = Ṽ2Ũ2, W2 = Ũ3Ṽ3

(triangles and angles are oriented counterclockwise).
In section 8.4 we give a nice formula for the flip after applying a local

change of coordinates such that in the quadrilateral where we perform the
flip, every edge is labeled by a symmetric n × n matrix. With this local
change of coordinates the formulas for the flip look like noncommutative
analogues of the formula for the flip for representations into SL(2,R).

4.6. Comparison with Fock–Goncharov coordinates. In this section
we show that a maximal representation is not always positive in terms of
Fock–Goncharov coordinates [10]. To do this, we take a positive 4-tuple of
Lagrangians and show that it does not have always positive Fock–Goncharov
coordinates.

To do this, first, we fix some symplectic basis (e, f) = (e1, e2, f1, f2) on
(R4, ω) and consider the following four Lagrangians: L1 := Le, L2 := Lf ,
L3 := Le,f (Id), L4 := Le,f (− Id). This 4-tuple has as X -coordinate (1, . . . , 1).

Since the Fock–Goncharov coordinates are defined for decorations by full
flags, we have to choose a line in each Lagrangian. We choose:

l1 = 〈e1 + θe2〉 ≤ L1

l2 = 〈f1 + λf2〉 ≤ L2

l3 = 〈e1 + f1 + µ(e2 + f2)〉 ≤ L3

l4 = 〈e1 − f1 + ν(e2 − f2)〉 ≤ L4

where θ, λ, µ, ν ∈ R some constants. Then the corresponding full flag for
each i ∈ {1, 2, 3, 4} is (li, Li, l

⊥
i ), where l⊥i = {v ∈ R4 | ω(li, v) = 0}.

So we get the following coordinates:

D1 = −(µθ + 1)(λ− ν)

(νθ + 1)(λ− µ)
D2 =

(λ− µ)(θ − ν)

(θ − µ)(λ− ν)
D3 = −(νλ+ 1)(θ − µ)

(µλ+ 1)(θ − ν)

T1 = −(µθ + 1)(θ − λ)

(λθ + 1)(θ − µ)
T2 = −(λθ + 1)(λ− µ)

(λµ+ 1)(λ− θ)
T3 = −(λµ+ 1)(µ− θ)

(θµ+ 1)(µ− λ)
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Figure 4.8.

T4 = −(λθ + 1)(θ − ν)

(νθ + 1)(θ − λ)
T5 = −(νλ+ 1)(λ− θ)

(θλ+ 1)(λ− ν)
T6 = −(θν + 1)(ν − λ)

(λν + 1)(ν − θ)
We are going to show that all these coordinates can not be all positive for

fixed θ, λ, µ, ν ∈ R. Assume first:

θ − λ
λθ + 1

> 0

Since T2 > 0, we get
λ− µ
λµ+ 1

> 0

Since T5 > 0, we get
λ− ν
νλ+ 1

> 0

Therefore,

D2D3 = −(λ− µ)(θ − ν)

(θ − µ)(λ− ν)

(νλ+ 1)(θ − µ)

(µλ+ 1)(θ − ν)
= −(νλ+ 1)(λ− µ)

(µλ+ 1)(λ− ν)
< 0

and D2 and D3 cannot be positive at the same time.
If we assume

θ − λ
λθ + 1

< 0
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then, since T2 > 0, we get
λ− µ
λµ+ 1

< 0

Since T5 > 0, we get
λ− ν
νλ+ 1

< 0

Therefore,

D2D3 = −(λ− µ)(θ − ν)

(θ − µ)(λ− ν)

(νλ+ 1)(θ − µ)

(µλ+ 1)(θ − ν)
= −(νλ+ 1)(λ− µ)

(µλ+ 1)(λ− ν)
< 0

and D2 and D3 cannot be positive at the same time.
This shows that the 4-tuple (L1, L2, L3, L4) is not positive in the sense of

Fock–Goncharov for each choice of lines li ∈ Li, i ∈ {1, 2, 3, 4}.

5. Topology of the space of maximal representations

We now use positive X -coordinates to understand the topology of the
space of (decorated) maximal representation, focussing first on the homo-
topy type and then on the homeomorphism type. Note that our results are
for surfaces with punctures; in the case of a closed surface, topological in-
formation about the space of maximal representations in Sp(2n,R) can be
obtained using Higgs bundles [1, 5, 11,12].

5.1. Homotopy type of the space of maximal representations. Let
S be an oriented surface of genus g with k punctures. In this section, we
prove the following theorem

Theorem 5.1. The space of decorated maximal representations
Md(π1(S),Sp(2n,R)) is homotopically equivalent to O(n)2g+k−1/O(n),
where g is the genus of S, k is the number of punctures and the quotient is
taken by the action of O(n) on O(n)2g+k−1 by simultaneous conjugation.

We fix some ideal triangulation T of S and notice that
Md(π1(S), Sp(2n,R)) =Md

T (π1(S),Sp(2n,R)).
We denote

DdT (π1(S),Sp(2n,R)) ⊆Md
T (π1(S), Sp(2n,R))

the subspace of all decorated maximal representations with all edge co-
ordinates equal to (1, . . . , 1). Since the edge coordinates are determined
by a decorated representation, this subspace is well defined. The space
DdT (π1(S), Sp(2n,R)) is one of the space of degenerate representations of
constant signature, which we analyze in detail in Section 6.5. There we
prove that DdT (π1(S),Sp(2n,R)) is homeomorphic to O(n)2g+k−1/O(n), see
Corollary 6.29.

Therefore, in order to prove Theorem5.1 it is enough to prove the following
lemma:

Lemma 5.2. The space DdT (π1(S),Sp(2n,R)) is a deformation retract of
Md
T (π1(S),Sp(2n,R)).
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Proof. First, note that the space of positive X -coordinates X+(S, T , n) is by
definition homeomorphic to (Rn>0)#E × O(n)2#F , where #E is the number
of edges in T and #F is the number of triangles of T . Since R>0 is con-
tractible, X+(S, T , n) is homotopy equivalent to O(n)2#F . We identify the
space O(n)2#F with the subspace

{x ∈ X+(S, T , n) | ∀e ∈ E(x(e) = (1, . . . , 1))} ⊂ X+(S, T , n)

An explicit retraction

X+(S, T , n)→ {x ∈ X+(S, T , n) | ∀e ∈ E(x(e) = (1, . . . , 1))}
is given by the formula:

H(x(e), x(w), t) = (1 + t(x(e)− 1), x(w)), t ∈ [0, 1]

for all edges e and all angles w of T .
Since

[rep+]−1(DdT (π1(S),Sp(2n,R))) =

= {x ∈ X+(S, T , n) | ∀e ∈ E(x(e) = (1, . . . , 1))}
, and for all x, x′ ∈ X+(S, T , n) such that [rep+](x) = [rep+](x′) it is
[rep+](H(x, t)) = [rep+](H(x′, t)) for all t ∈ [0, 1], we can use the map
[rep+] : X+(S, T , n) → Md

T (π1(S),Sp(2n,R)) to project the retraction H
to a retraction

Md
T (π1(S), Sp(2n,R))→ DdT (π1(S), Sp(2n,R))

�

As a corollary we also get

Corollary 5.3. The space of decorated maximal representations
Md(π1(S),PSp(2n,R)) is homotopically equivalent to PO(n)2g+k−1/PO(n),
where g is the genus of S, k is the number of punctures and the quotient is
taken by the action of PO(n) on PO(n)2g+k−1 by simultaneous conjugation.

Proof. For representations in Md
T (π1(S),PSp(2n,R)) all angle coordinates

are in the group PO(n). So repeating the argument in the proof of Theo-
rem 5.1 gives the result. �

As a corollary we obtain the following statement on the number of con-
nected components that had been proven in [21].

Corollary 5.4. [21, Theorem 7.2.7]
• The space of decorated maximal representations
Md(π1(S),Sp(2n,R)) has 22g+k−1 connected components.
• The space of decorated maximal representations
Md(π1(S),PSp(2n,R)) has 22g+k−1 connected components if n
is even. If n is odd, it is connected.

We now turn to determine the number of connected components of the
space of maximal representation M(π1(S),Sp(2n,R)) without any addi-
tional decoration. We prove the following theorem:
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Theorem 5.5. The number of connected components of
M(π1(S), Sp(2n,R)) agree with the number of connected components
ofMd(π1(S),Sp(2n,R)). In particular the space of maximal representations
has 22g+k−1 connected components.

First, we need the following lemma:

Lemma 5.6. Let M ⊂ Sp(2n,R) be the set of all diagonalizable symplectic
matrices with pairwise different eigenvalues. Set Md := {(A,L) ∈ M ×
Lag(2n,R) | A.L = L}. Then the projection map p : Md → M is a 2n : 1-
covering map.

Proof. Observe that since A ∈ M has pairwise distinct real eigenvalues, it
has exactly 2n invariant Lagrangians, so the map p is a 2n : 1-map.

Without lost of generality, consider A ∈M a diagonal matrix and L some
fixed Lagrangian of A. Since any small variation of A can be written as
B := T (A+∆)T−1 where T ∈ Sp(2n,R) close enough to Id and ∆ is a small
diagonal matrix so that A + ∆ ∈ M , we can take a small neighborhood U
of A in M parameterized in this way. Since, A+ ∆ has distinct eigenvalues,
T is well defined up to right multiplication with a matrix of the following
form diag(±1, . . . ,±1). These matrices act trivially on Lag(2n,R), therefore
the invariant Lagrangian for B given by T.L is well defined. For T small
enough the rule B 7→ T.L is a continuous inverse map for p|U . So p is a local
homeomorphism.

The map p is a proper local homeomorphism, so it is a covering. �

Remark 5.7. Let us make the following observations
• For every A ∈M all eigenvalues of A are different from 1. Such ele-
ments are Shilov hyperbolic, they have a unique attracting Lagrangian
and a unique repelling Lagrangian fix point.
• The setM is an open subset of Sp(2n,R) and Sp(2n,R)rM is closed
of codimension 2.

For the following discussion, we denote by Hommax(π1(S), Sp(2n,R)) ⊂
Hom(π1(S), Sp(2n,R)) the space of maximal homomorphism and by
Homd

max(π1(S), Sp(2n,R)) ⊂ Homd(π1(S), Sp(2n,R)) the space of decorated
maximal homomorphisms, without taking conjugacy classes. Note, that the
number of connected components of M(π1(S), Sp(2n,R)) is equal to the
number of connected components of Hommax(π1(S), Sp(2n,R)). This fol-
lows from the fact that the group Sp(2n,R) is connected. The same holds
for Md(π1(S),Sp(2n,R)) and Homd

max(π1(S), Sp(2n,R)). We denote the
natural projections:

Ψ: Hommax(π1(S),Sp(2n,R))→M(π1(S), Sp(2n,R)),

Ψd : Homd
max(π1(S),Sp(2n,R))→Md(π1(S),Sp(2n,R)).

Corollary 5.8. Let X ⊂ Hommax(π1(S),Sp(2n,R)) be the subset containing
all maximal representation such that for every ρ ∈ X all peripheral elements
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of ρ are Shilov hyperbolic. Let Xd be the preimage of X under the projec-
tion p : Homd

max(π1(S),Sp(2n,R)) → Hommax(π1(S),Sp(2n,R)). Then the
restriction p|Xd : Xd → X is a finite-to-one covering.

Note that by Remark 5.7 X resp. Xd are open subsets in
Hommax(π1(S),Sp(2n,R)) resp. Homd

max(π1(S), Sp(2n,R))), and the com-
plements Hommax(π1(S),Sp(2n,R)) r X and Homd

max(π1(S),Sp(2n,R)) r
Xd are closed of codimension at least 2. In particular, X and
Hommax(π1(S),Sp(2n,R)) have the same number of connected components,
and in every connected component of Hommax(π1(S), Sp(2n,R)) there is a
representation that is contained in X.

Proposition 5.9. The space of maximal homomorphisms
Hommax(π1(S),Sp(2n,R)) has the same number of connected components as
the space of decorated maximal homomorphisms. Homd

max(π1(S), Sp(2n,R)).

Proof. Let N be the number of connected components of
Hommax(π1(S),Sp(2n,R)) and Nd the number of connected components of
Homd

max(π1(S),Sp(2n,R)).
It is immediate that Nd ≥ N , thus we have to show that N ≥ Nd.

For this we assume that there are two decorated representations (ρ,D1)
and (ρ,D2), which project to the same (undecorated) representations ρ ∈
Hommax(π1(S),Sp(2n,R)). We show that then (ρ,D1) and (ρ,D2) are in
the same connected component of Homd

max(π1(S), Sp(2n,R)). Without loss
of generality we can assume that ρ ∈ X.

We consider the set of degenerate representations DdT (π1(S),Sp(2n,R)).
Note that all homomorphisms in

D(π1(S), Sp(2n,R)) := Ψ−1(D(π1(S), Sp(2n,R)))

admit only one decoration. So we can take some representation ρ ∈ X and
connect it by a path γ : [0, 1] → Hommax(π1(S),Sp(2n,R)) to a representa-
tion ρ0 ∈ D(π1(S), Sp(2n,R)) so that γ([0, 1)) ⊂ X.

Let (ρ,D1), (ρ,D2) be two lifts of ρ inMd(π1(S), Sp(2n,R)). We also lift a
path γ twice starting from (ρ,D1) and from (ρ,D2). Because of compactness
of Lag(2n,R), both of these lifts finish at the same point namely at the unique
lift of ρ0 inDd(π1(S), Sp(2n,R)). The concatenation of these two lifted paths
gives a path between (ρ,D1) and (ρ,D2). This proves that Nd ≤ N . �

This finishes the proof of the Theorem 5.5.

5.2. Homeomorphism type of the space of maximal representations.
In this section we go further to determine not only the homotopy type,
but actually the homeomorphism type of the space of decorated maximal
representations.

We recall from the description of positive X -coordinates, that if T is an
idea triangulation of the oriented surface S of genus g with k punctures, the
three angle coordinates associated to the three corners of one triangle satisfy
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the relation that their product is equal to the identity. We therefore choose in
every triangle two independent angles, the third one is then uniquely defined.
We denote the set of chosen independent angles by W ′.

The space of positive X -coordinates
X+(S, T , n) ∼= (R>0 × Rn−1

≥0 )E ×O(n)W
′

can be seen as a trivial bundle

θ : X+(S, T , n)→ (R>0 × Rn−1
≥0 )E =: B

with compact fiber O(n)W
′ .

Let y ∈ B, then y(e) = (y1(e), . . . , yn(e)). Consider the set
{y1(e), . . . , yn(e)}, let k be the cardinality of this set, so {y1(e), . . . , yn(e)} =
{λ1, . . . , λk} for λi > λi+1 for all 1 ≤ i ≤ k − 1. We denote by nei the multi-
plicity of λi in the tuple (y1(e), . . . , yn(e)).

We define the stabilizer of y to be

Stab(y) :=
∏
e∈E

O(ne1)× · · · ×O(ner).

By Proposition 4.8 the stabilizer of y acts on the fiber θ−1(y) ⊆ X+(S, T , n)
over y ∈ B. So we can consider the following singular fibration:

θ−1(y)/ Stab(y) ↪→ X+(S, T , n)/ ∼
↓

y ∈ B
where the equivalence relation ∼ is defined fiberwise by action of Stab(y) on
θ−1(y) ∼= O(n)W

′ .
By proposition 4.8, the map

[rep+] : X+(S, T , n)→Md
T (π1(S),Sp(2n,R))

is constant on each orbit of Stab(y) on θ−1(y). Therefore, the map

[rep+]′ := [rep+] ◦ q−1 : X+(S, T , n)/ ∼→Md
T (π1(S),Sp(2n,R))

well-defined and is a homeomorphism, where

q : X+(S, T , n)→ X+(S, T , n)/ ∼
is the quotient map.

Since θ−1(y) ∼= O(n)W
′ , we have the following description of

Md
T (π1(S),Sp(2n,R)):

O(n)W
′
/Stab(y) ↪→ Md

T (π1(S), Sp(2n,R))
↓

y ∈ (R>0 × Rn−1
≥0 )E

Proposition 5.10. The space X+(S, T , n) has #W ′ = 2#T connected com-
ponents that are all diffeomorphic to each other.

The connected components of X+(S, T , n) can be labeled by elements of
the set {0, 1}W ′.
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Moreover, for each y ∈ B

θ−1(y) =
⊔

p∈{0,1}W ′
Fp(y)

where Fp(y) is the fiber in the connected component Cp over y ∈ B, p ∈
{0, 1}W ′. For all y ∈ B and for all p, q ∈ {0, 1}W ′ fibers Fp(y) and Fq(y)
are diffeomorphic.

Proof. The set of connected components of X+(S, T , n) can be identified
with the set {0, 1}W ′ , where to each independent angle w we associate 0 if
it is x(w) ∈ SO(n) and 1 otherwise (x ∈ X+(S, T , n)).

The diffeomorphism between connected components Cp and Cq for p, q ∈
{0, 1}W ′ is given by multiplication of angle coordinates x(w) with a matrix
Up(w)q(w) for all w ∈ W ′ where U ∈ O(n) r SO(n). This diffeomorphism is
given fiberwise, therefore, Fp(y) and Fq(y) are diffeomorphic for all y ∈ B
and for all p, q ∈ {0, 1}W ′ �

Proposition 5.11. Each connected component Cp is mapped by [rep+] sur-
jectively onto some connected component ofMd

T (π1(S), Sp(2n,R)).

Proof. First of all, we fix some connected component Cp and consider
the restriction of [rep+] to this component. [rep+](Cp) is path con-
nected and, therefore, is contained in some connected component of
Md
T (π1(S),Sp(2n,R)) which we denote by Cp.
Since θ|Cp : Cp → B is surjective, it is enough to show that [rep+] maps

each fiber of Cp surjectively to each fiber of Cp over B. We take some
y ∈ B and consider the fiber F (y) ⊆ Cp, the fiber Fp(y) ⊆ Cp and F (y)′ :=
θ−1(y) ∩ [rep+]−1(Cp).

Since F (y) = F (y)′/Stab(y) is a quotient be an action of a group, the
map [rep+]|F (y)′ : F (y)′ → F (y) = F (y)′/ Stab(y) is open.
F (y)′ = tq∈QFq(y) where Q is some subset in {0, 1}#W ′ and p ∈ Q. So

F (y)′ is a union of finitely many diffeomorphic connected components, and
Fp(y) is one of them. Therefore Fp(y) is open in F (y)′.

Moreover, since Fp(y) is compact, [rep+]Fp(y) is open and compact in
F (y), so it is closed and, therefore, [rep+]Fp(y) = F (y). �

Before we state the next theorem, we fix the following notation:
Sym+(n,R) is the space of all symmetric positive definite matrices,

∆n := {diag(d1, . . . , dn) | d1 ≥ · · · ≥ dn > 0} ⊂ Sym+(n,R).

Stab(D) := O(n) ∩O(D)

for D ∈ ∆n. Note that ∆n is diffeomorphic to R>0×Rn−1
≥0 . We freely identify

edge coordinates with elements of ∆n.
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Theorem 5.12. The space of decorated maximal representation
Md
T (π1(S),Sp(2n,R)) is homeomorphic to the singular fibration

FD ↪→ E
↓

D ∈ ∆n

which is obtained from the trivial bundle

Sym+(n,R)6g+3k−6 ×O(n)2g+k−1 ↪→ Sym+(n,R)6g+3k−6 ×O(n)2g+k−1 ×∆n

↓
D ∈ ∆n

by dividing fiberwise by the action by common conjugation of Stab(D) on the
fiber over D ∈ ∆n, i.e.

FD =
(

Sym+(n,R)6g+3k−6 ×O(n)2g+k−1
)
/ Stab(D)

where Stab(D) acts on Sym+(n,R)6g+3k−6×O(n)2g+k−1 by common conju-
gation.

Proof. We consider a special ideal triangulation of S, see Figure 5.1.

Figure 5.1. Triangulation of S. Sides with the same labels
are identified

This triangulation divides the surface in blocks of four different types.
The blocks of type 1, see Figure 5.2, the clock of type 2, see Figure 5.4, and
the blocks of type 3 and 4, see Figure 5.6.

We parametrize each block and then describe, how to glue the different
blocks together. Recall that we chose two independent angles in each trian-
gle, the third angles coordinate is then uniquely determined.

Block of type 1: We choose independent angles as indicated in Figure 5.2,
with coordinates U1, ..., U6 and denote by D0, D1, D2, D3 the edge coordi-
nates (considered as diagonal n× n-matrices, where the entries are ordered
by size).

We define three maps:

f1(U1, D1, U2) = (U1D1U
−1
1 , U1U

−1
2 ) =: (S1, V1),
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Figure 5.2. Block of type 1

f2(U3, D2, U4) = (U−1
3 D2U3, U

−1
3 U−1

4 ) =: (S2, V2),

f3(U5, D3, U6) = (U−1
5 D3U5, U

−1
5 U6) =: (S3, V3),

where Si are symmetric matrices, and Vi are orthogonal matrices. By defi-
nition, these maps are invariant under changing of angles along edges with
coordinates D1, D2, D3. We consider (Si, Vi) as new coordinates on the block
of type 1 (see Figure 5.3 left).

Figure 5.3. New coordinates on the block of type 1

From the remaining “unused” edge coordinate D0 we get an additional
equivalence relation for the new coordinates {(Si, Vi)} (see Proposition 4.8).
We could multiply the angle coordinates U1, U6, U2, U3 by elements of
Stab(D0). This induces the following equivalence relation:

S1 ∼WS1W
−1

S2 ∼WS2W
−1

V1 ∼ V1W
−1

V2 ∼WV2
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V3 ∼ V3W
−1

for W ∈ Stab(D0). We therefore define the map:

f4(S1, S2, V1, V2, V3, D0) :=

= (V1S1V
−1

1 , V1S2V
−1

1 , V1D0V
−1

1 , V1V2, V3V
−1

1 ) =

=: (S′1, S
′
2, S0, V

′
2 , V

′
3).

By definition, these maps are invariant under changing of angles along the
edges with coordinates D0. We consider (S0, S

′
1, S
′
2, S3, V

′
2 , V

′
3) as new co-

ordinates on the block of type 1 (see Figure 5.3 right). They define the
old edge and angle coordinates exactly up to equivalence relation given by
Proposition 4.8.

Note, that we have not yet used the left edge. this edge will play a role
when gluing the different blocks . Changing of angle coordinates along this
edge induces a global conjugation on all new coordinates of the block of type
1.

Block of type 2: We now proceed in a similar way, we choose independent
angles as indicated in Figure 5.4 with coordinates U1, ..., U8 and denote by
D0, D1, D2, D3, D4 the edge coordinates.

Figure 5.4. Block of type 2

We introduce new coordinates (Si, Vi) on the block of type 2 (see Figure 5.5
left) by defining

f1(U1, D1, U2) = (U2D1U
−1
2 , U−1

1 U−1
2 ) =: (S1, V1),

f2(U3, D2, U4) = (U−1
3 D2U3, U

−1
3 U−1

4 ) =: (S2, V2),

f3(U5, D3, U6) = (U−1
5 D3U5, U

−1
5 U6) =: (S3, V3),

f4(U7, D3, U8) = (U7D4U
−1
7 , U7U

−1
8 ) =: (S4, V4).

By definition, these maps are invariant under changing of angles along edges
with coordinates D1, D2, D3, D4.
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Figure 5.5. New coordinates on the block of type 2

The “unused” edge with coordinate D0 gives us an additional equivalence
relation We could multiply U7, U6, U2, U3 by elements of Stab(D0). This
induces the following equivalence relation:

S1 ∼WS1W
−1

S2 ∼WS2W
−1

S4 ∼WS4W
−1

V1 ∼ V1W
−1

V2 ∼WV2

V3 ∼ V3W
−1

V4 ∼WV4

for W ∈ Stab(D0). Therefore we set :

f4(S1, S2, S4, V1, V2, V3, V4, D0) :=

= (V3S1V
−1

3 , V3S2V
−1

3 , V3S4V
−1

3 , V3D0V
−1

3 , V1V
−1

3 , V3V2, V3V4) =

=: (S′1, S
′
2, S
′
4, S0, V

′
1 , V

′
2 , V

′
4).

and consider (S0, S
′
1, S
′
2, S3, S

′
4, V

′
1 , V

′
2 , V

′
4) as a new coordinates on the block

of type 2 (see Figure 5.5 right). They define the old edge and angle coordi-
nates exactly up to equivalence relation given by Proposition 4.8.

Block of type 3: We choose independent angles as indicated in Figure 5.6
left, with coordinates U1, ..., U4 and denote by D1, D2 the edge coordinates.
Consider

f1(U1, D1, U2) = (U−1
2 D1U2, U

−1
1 U2) =: (S1, V1),

f2(U3, D2, U4) = (U4D2U
−1
4 , U3U

−1
4 ) =: (S2, V2).

By definition, these maps are invariant under changing of angles along edges
with coordinates D1, D2, and we consider (Si, Vi) as a new coordinates on
the block of type 3 (see Figure 5.7 left).
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Figure 5.6. Block of type 3 (left), block of type 4 (right)

Figure 5.7. New coordinates on the block of type 3 (left)
and on the block of type 4 (right)

Block of type 4: We choose independent angles as indicated in Figure 5.6
right, with coordinates U1, U2 and denote by D1 the edge coordinate. We
define

f(U1, D1, U2) = (U−1
1 D1U1, U2U1) =: (S, V ),

and consider (S, V ) as a new coordinates on the block of type 4 (see Figure 5.7
right). Note, the right edge which we have not used yet will play a role in
the gluing of blocks. Changing of angle coordinates along this edge induces
a global conjugation of the new coordinate.

With this, for every block we have now a parametrization given by several
copies of Sym+(n,R) and of orthogonal groups O(N). We now explain how
to glue the different blocks.

We will glue blocks from the right to the left as on the Figure 5.1 by induc-
tion. Assume that the part of the surface laying to left has the parametriza-
tion Pl = O(n)×O(n)×P ′r, the block lying to the right has parametrization
Pr = Sym+(n,R)N1 × O(n)N2 for some N1, N2 > 0 and this is not the last
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step of gluing so it is not the block of the type 4. We assume as well that
changing of angles around the gluing edge by an angleW ∈ Stab(D) induces
a conjugation of all coordinates in Pl by W . We can assume that this holds
by induction, since in the first step, when gluing a block of type 1 with some
other block it holds.

We describe the gluing of two blocks along an edge with coordinate D
and coordinates around this edge as in Figure 5.8. We denote by Ki the
coordinates in Pl.

Figure 5.8. Gluing, intermediate step

The edge with coordinate D gives us an additional equivalence relation
for coordinates Pl and (U1, U2):

Ki ∼WKiW
−1

U1 ∼ U1W
−1

U2 ∼WU2

for W ∈ Stab(D) and for all Ki coordinates of Pr. So we can define the
map:

fgl(U1, U2, (Ki), D) := (U1U2, U1DU
−1
1 , (U1KiU

−1
1 )).

By definition, this map is invariant under changing of angles along edges
with coordinates D. We consider these as the new coordinates on the glued
block. They define the old coordinates exactly up to equivalence relation
given by Proposition 4.8. Note, that there is a right edge which we have not
used yet. Changing of angle coordinates along this edge induces conjugation
on the new coordinate of glued block.

Now we describe the last step of gluing with a block of type 4. We can
write again Pr = Sym+(n,R)N1 × O(n)N2 for some N1, N2 > 0 and Pl =
Sym+(n,R)×O(n). Coordinates on the glued edge is D (see Figure 5.9).

As we have seen, the changing of angles around this edge by some
W ∈ Stab(D) induces the common conjugation by W of all coordinates
in Pr and Pl. To define the space which is in 1-1 correspondence with the
Md
T (π1(S),Sp(2n,R)) we have to take a quotient by conjugation depending

on D. It can be seen as a singular fibration coming from the projection map:

p : P → ∆n
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Figure 5.9. Gluing, last step

of P := Pr × Pl ×∆n to ∆n by dividing of the equivalence relation ∼ such
that for eachK,K ′ ∈ P with p(K) = p(K ′) it isK ∼ K ′ if and only if (K ′i) =
(WKiW

−1) for some W ∈ Stab(p(K)), where K = (Ki),K
′ = (K ′i). �

Remark 5.13. From the last theorem we get:

P = Sym+(n,R)6g+3k−7 ×O(n)2g+k−1 ×∆n.

The dimension of P agrees with the dimension ofMd
T (π1(S),Sp(2n,R)), so

we get:

dim(Md
T (π1(S),Sp(2n,R))) = (2g+k−2)n(2n+1) = |χ(S)|dim(Sp(2n,R)).

Remark 5.14. Consider the subset

∆n
gen = {diag(d1, . . . , dn) | ∀i ∈ {1, . . . , n− 1}(di 6= di+1)} ⊂ ∆n

then for all D ∈ ∆n
gen it is Stab(D) = O(1)n. We can consider the subfibra-

tion E0 := E|∆n
gen
→ ∆n

gen. Since Stab(D) = O(1)n for all D ∈ ∆n
gen, we

have

E0 =
((

Sym+(n,R)6g+3k−6 ×O(n)2g+k−1
)
/O(1)n

)
×∆n

gen

where O(1)n ≤ O(n) acts by simultaneous conjugation. This is an orbifold
and it is an open dense subset ofMd

T (π1(S), Sp(2n,R)).

Remark 5.15. The definition of E0 =: E(e0) depends on the edge e0 along
which we were gluing in the last step in the proof of the Theorem 5.12.
Actually, we can choose any edge to do this last gluing. So for each edge
e the constructed as above subspace E(e) is homeomorphic to E0. Because
the property to be an orbifold is a local property, the finite union of all
E(e) for all edges e is an orbifold. We denote this subspace by E′ and
call it generic part of Md

T (π1(S),Sp(2n,R)). It contains all representation
with at least one edge coordinate in ∆n

gen. This is an open dense subset of
Md
T (π1(S),Sp(2n,R)).

Corollary 5.16. The space E′ for n = 2 contains all Zariski dense repre-
sentations.
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Proof. Let [ρ,D] ∈ Md
T (π1(S), Sp(2n,R)) r E′ and x ∈ X+(S, T , n) such

that [rep+](x) = [ρ,D]. Then for every edge e, x(e) = (λ, λ) for some λ > 0.
By Proposition 6.23, [ρ,D] is a representation into some copy by conjugation
of SL(2,R)⊗Z2 O(2) ≤ Sp(4,R), therefore, it is not Zariski dense. �

5.2.1. Topology ofMd
T (π1(S),Sp(4,R)). Theorem 5.12 give a description of

the homeomorphism type of the space of decorated maximal representa-
tions Md

T (π1(S), Sp(2n,R)) as a singular fibration. When n = 2 we can
go further to explicitly determine the homeomorphism type of all connected
components ofMd

T (π1(S),Sp(4,R)). In this case the singular fibration is

(Sym+(2,R)N ×O(2)M ×∆2)/ ∼→ ∆2

where N = 6g+3k−7,M = 2g+k−1 and the equivalence relation ∼ is given
by fiberwise action of the group Stab(y) for y ∈ ∆2. Since n = 2, there are
two possibilities for the stabilizer , we can have Stab(y) = O(1)×O(1) < O(2)
when y = (d1, d2) with d1 6= d2, and Stab(y) = O(2) for y = (d, d). Since
Stab(y) acts by simultaneous conjugation on all factors, there is a kernel
{± Id} ∈ O(1)×O(1) of this action.

We identify Sym+(2,R) using the polar coordinates with R>0 × C. Then
the action of g ∈ SO(2) is a rotation in C-factor, for g = diag{1,−1} it
is the reflection around the x-axis. Since O(2) = Z2 n SO(2) where Z2 =
{Id,diag(1,−1)}, first we can quotient out the fiberwise action of Stab(y) ∩
SO(2) and then the global action of Z2.

We now focus first on analyzing the connected component C0 :=
(Sym(2,R)N × SO(2)M ×∆2)/ ∼.
Theorem 5.17. The connected component C0 is homeomorphic to the prod-
uct RN+1

>0 × Q, where (Q = (S1)M × Q1)/Z2 where Z2 acts by the diagonal
complex conjugation on each factor. Q1 = (CN × R≥0)/ ∼1→ R≥0 is a sin-
gular fibrations, whose total space is equal to CN×R>0tCN/ SO(2)×{0}. In
particular Q1 is a manifold away from (0, . . . , 0) ∈ CN ×R≥0, and (0, . . . , 0)
is not an orbifold point.

We subdivide the proof of Theorem 5.17 into several Lemmata.
First note that we can write

C0 = Q0/Z2

Q0 := (Sym+(2,R)N × SO(2)M ×∆2)/ ∼′

where ∼′ is the equivalence relation defined by the fiberwise action of
Stab(y) ∩ SO(2) by simultaneous conjugation, and then Z2 acts by simulta-
neous conjugation by diag(1,−1).

Lemma 5.18. Q0 is homeomorphic to the product of RN+1
>0 × (S1)M and

the singular fibration Q1 := (CN × R≥0)/ ∼1→ R≥0 where ∼1 is defined
fiberwise: if 0 6= x ∈ R≥0 then ∼1 is trivial; if x = 0 then ∼1 is given by the
diagonal SO(2)-action by rotations on CN around the origin. We can write:

(CN × R≥0)/ ∼1= CN × R>0 t CN/SO(2)× {0}.
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This fibration is a manifold everywhere except for the point (0, . . . , 0, 0) ∈
CN × R≥0. We denote Q′1 := Q1 r {(0, . . . , 0, 0)}.

Proof. The homeomorphism of Q0 with the product of RN+1
>0 × (S1)M and

the singular fibration Q1 = (CN × R≥0)/ ∼1→ R≥0 is given just by the
identification above of Sym+(2,R) with R>0×C, SO(2) with U(1) = S1 ⊂ C
and ∆2 with R>0 × R≥0.

The generic part of Q0 projects to points x ∈ Q1 such that x 6=
(0, . . . , 0, 0). Since the generic part of Q0 is a manifold, Q′1 = Q1 r
{(0, . . . , 0, 0)} is a manifold. �

Lemma 5.19. The connected component C0 is homeomorphic to the product
of RN+1

>0 and the quotient Q2 := ((S1)M × Q1)/Z2 where Z2 acts by the
diagonal complex conjugation on each factor.

Let Q′2 := ((S1)M × Q′1)/Z2 ⊂ Q2. Q′2 is a manifold everywhere except
for points of the following form: (s1, . . . , sM , [z1, . . . , zN , r]), where all si ∈
{±1}, zi ∈ R, r ≥ 0.

Proof. Since for r = 0 we have (z1, . . . , z2) ∼1 (z1e
iφ, . . . , zne

iφ) for every
φ ∈ R, it is

(z̄1, . . . , z̄2) ∼1 (z̄1e
−iφ, . . . , z̄ne

−iφ) = (z1eiφ, . . . , zneiφ),

the complex conjugation on Q1 is well-defined. This gives the homeomor-
phism given in the statement of the lemma.

Since the action by diagonal conjugation is free and discrete everywhere on
(S1)M ×Q′1 except for real points, the corresponding quotient is a manifold.

�

Lemma 5.20. Q′2 is an orbifold but not a manifold. The real points of Q′2
are orbifold points. Small neighborhoods of these points are homeomorphic
to products of Euclidian balls of dimension N + 1 and Euclidian balls of
dimension M +N modulo the antipodal map.

Proof. Let p := (s1, . . . , sM , x1, . . . , xN , r) ∈ (S1)M ×Q′1 be some real point.
Without loss of generality, we can assume r > 0. Then

p ∈ (S1)M × (CN × R>0)/ ∼1= (S1)M × CN × R>0.

Note that C = R⊕ iR and since Z2 acts by complex conjugation on (S1)M ×
CN × R>0, we can write:

(S1)M × CN × R>0/Z2
∼= ((S1)M × RN )/Z2 × RN × R>0

where Z2 acts on R-factors by antipodal map. In a small neighborhood U±
of ±1 ∈ S1 the map U± 3 ±eit 7→ t ∈ V = (−ε, ε) is a homeomorphism.
Z2-action by conjugation on U± induces the action by antipodal map on V .
The fixed points by this Z2-action are exactly the real points

Note that N +M > 3. The fact that Q′2 is not a manifold follows from
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Proposition 5.21. Let X be a smooth manifold, G be a finite group acting
on X by diffeomorphisms. Let X ′ be the subset of X consisting of points
with non-trivial stabilizer in G. Assume, X ′ is discrete in X.

If dimX ≥ 3, then X/G is not a topological manifold, but (X rX ′)/G is
a smooth manifold.

Proof of Proposition. We prove it by contradiction. Assume, X/G is a man-
ifold.

Note, the quotient map q : X → X/G is open because G acts by diffeomor-
phism on X. Moreover, q|XrX′ is a covering map. Therefore, (X rX ′)/G
is a manifold

Let x ∈ X ′ and y := q(x). Since X/G assumed to be a topological
manifold, we can take an open neighborhood V of y which is homeomorphic
to an Euclidian ball. Then q−1(V ) is a union of open sets which are open
neighborhoods of points of q−1(y). We can always assume that it is a disjoint
union of neighborhoods of points in q−1(y) by taking V small enough.

We take a component U of q−1(V ) which is an open connected neigh-
borhood of x. We can take V ′ ⊂ q(U) open neighborhood of y ∈ X/G
homeomorphic to an Euclidian ball because q is open. Then U ′ := q|−1

U (V ′)
is connected, open in X and q(U ′) = V ′ = U ′/Gx, where Gx is the stabilizer
of x in G.

The group Gx acts freely and properly discontinuously on U ′r{x}. There-
fore, G ≤ π1((U ′ r {x})/Gx) = π1(V ′ r {y}) 6= {1}, but V ′ r {y} is a
Euclidian ball without one point of dimension at least 3, so it has a trivial
fundamental group. This is a contradiction to the assumption that X/G is
a manifold. �

Remark 5.22. The condition dimX ≥ 3 is essential. To see it, take X =
S1 × S1 ⊆ C2 and G = Z2 = {1, a} and a(z1, z2) = (z̄1, z̄2). Then X/G is
homeomorphic to S2, so it is a manifold.

�

To prove that the point 0 = (0, . . . , 0) ∈ Q1 = CN × R>0 t CN/ SO(2)×
{0} is not an orbifold singularity we use the following proposition (see [17,
Exercise 3.3.33]):

Proposition 5.23. If M is a compact contractible n-manifold then ∂M is
a homology (n− 1)-sphere; that is Hi(∂M ;Z) ∼= Hi(Sn−1;Z) for all i.

We note, that Q1 is a manifold everywhere except for 0 because CN ×
R>0 ⊂ Q1 is an open manifold, and as a fibration Q1 → CN/ SO(2) it is a
cone bundle everywhere except for 0 ∈ CN/ SO(2). Since CN/SO(2)r{0} ∼=
R>0 ×CPN−1 is topologically a manifold, the corresponding cone bundle is
a topological manifold.

First of all, we take an contractible neighborhood of 0 inQ1 of the following
form:

U := B × [ε, 0) tB/ SO(2)× {0}
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where B = {z ∈ CN | ‖z‖ ≤ ε} for some ε > 0. Everywhere except for 0 it
is a manifold with boundary

∂U = B × {ε} t ∂B × (ε, 0) t ∂B/SO(2)× {0}
where ∂B ∼= S2N−1. ∂U is simply connected, so if we assume 0 ∈ Q1 to
be an orbifold point, then, by Proposition ∂U , have to be a finite quotient
of homology sphere, but by generalized Poincaré conjecture, ∂U have to
be a sphere since it is simply connected. It contradicts to the fact that
∂U r {0} × {ε} contracts to the complex projective space

CPN−1 ∼= ∂B/SO(2)× {0}
that is not contractible.

Now we consider any of the other connected components

Cq := (Sym+(2,R)N × SO(2)M−q × (J SO(2))q ×∆2)/ ∼
where J = diag(1,−1), q 6= 0. We prove

Theorem 5.24. The connected component Cq is homeomorphic to

RN+1
>0 × RN+1 × ((S1)M−1 × RN+1)/Z2.

((S1)M−1 × RN+1)/Z2 is a manifold everywhere except for the following
points: (±1, . . . ,±1, 0, . . . , 0). These points are orbifold points. Small neigh-
borhoods of them are homeomorphic to Euclidian balls modulo the antipodal
map.

We can write
Cq = Qq/Z2

Qq := (Sym+(2,R)N × SO(2)M−q × (J SO(2))q ×∆2)/ ∼′

where ∼′ is the equivalence relation defined by the fiberwise action of
Stab(y) ∩ SO(2) by simultaneous conjugation, and then Z2 acts by simulta-
neous conjugation by diag(1,−1).

Then Theorem 5.24 is a direct consequence of the following

Lemma 5.25. Qq is homeomorphic to

RN+1
>0 × RN+1 × (S1)M−1 × RN+1.

Proof. As before, we identify Sym+(2,R) ∼= R>0 × C, ∆2 ∼= R>0 × R≥0,
SO(2) ∼= S1. We also identify J SO(2) with SO(2) ∼= S1 by the map JU 7→ U
and write:

Qq ∼= RN+1
>0 × (S1)M−q × (CN × (S1)q × R≥0)/ ∼1

where ∼1 is trivial for 0 6= x ∈ R≥0 and is given by the diagonal action of
SO(2) by rotations on S1-factors and C-factors around the origin.

Since q 6= 0 we can consider the following map:

f : CN × (S1)q × R≥0 → CN × (S1)q × R≥0,

f(z1, . . . , zN , s1, . . . , sq, r) := (z1s
−1
q , . . . , zNs

−1
q , s1s

−1
q , . . . , sq−1s

−1
q , sq, r).
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This map is a homeomorphism, and the first N + q − 1 components are
invariant under ∼1. So we can write:

Qq ∼= RN+1
>0 × (S1)M−1 × CN × (S1 × R≥0)/ ∼2

where ∼2 is trivial for 0 6= x ∈ R≥0 and is given by the action of SO(2) by
rotations on S1. So using the polar coordinates, we identify (S1×R≥0)/ ∼2

∼=
C and get

Qq ∼= RN+1
>0 × (S1)M−1 × CN+1

Since C = R + iR we can write:

Qq ∼= RN+1
>0 × RN+1 × (S1)M−1 × RN+1

�

6. General X -coordinates

In this section we introduce general, not necessarily positive X -coordinates
with respect to a chosen ideal triangulation T of S. General X -coordinates
consists of triangle invariants, which are signatures of certain quadratic
forms, associated to every triangle of T , edge invariants and angle invari-
ants.

For the edge invariants we had to simultaneously diagonalize pairs of pos-
itive definite bilinear forms. Here we would have to simultaneously diago-
nalize pairs of non-degenerate bilinear forms of varying signature. This is
in general impossible. We need to find some analog of this diagonalization
process. To do this, we use the following theorem (for the proof and details,
see Appendix A.3):

Theorem 6.1. Let β3, β4 be two symmetric non-degenerate bilinear forms
on some vector space L. We consider β3, β4 as maps L→ L∗ and define the
map φ := β−1

3 ◦ β4.
Then there exists a basis e of L such that

[φ]e = X0(β3, β4) :=

J1 0 0
0 J2 0
0 0 K


[β3]e = X1(β3, β4) :=

I∗1 0 0
0 −I∗2 0
0 0 I2∗


[β4]e = X2(β3, β4) := X1(β3, β4)X0(β3, β4)

where for r = 1, 2

I∗r =


I∗1r 0 . . . 0 0
0 I∗2r . . . 0 0

. . .
0 0 . . . 0 I∗krr

 , Jr =


J1r 0 . . . 0 0
0 J2r . . . 0 0

. . .
0 0 . . . 0 Jkrr


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I2∗ =


I2∗

1 0 . . . 0 0
0 I2∗

2 . . . 0 0
. . .

0 0 . . . 0 I2∗
s

 , K =


K1 0 . . . 0 0
0 K2 . . . 0 0

. . .
0 0 . . . 0 Ks


where nir := dim(I∗ir) = dim(Jir), mj := dim(I2∗

j ) = dim(Kj) and

I∗ir =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


nir×nir

I2∗
j =



0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 −1

. . .
0 0 1 0 . . . 0 0
0 0 0 −1 . . . 0 0
1 0 0 0 . . . 0 0
0 −1 0 0 . . . 0 0


mj×mj

Jir are Jordan blocks with eigenvalue λir ∈ R, Kj are generalized Jordan
blocks with eigenvalue µj ∈ C r R such that λir ≥ λi+1,r, µj ≥ µj+1, where
for complex numbers the following linear order is used: x + iy > x′ + iy′ if
x > x′ or x = x′ and y > y′.

Remark 6.2. The basis e is in general not unique but the matricesX0(β3, β4),
X1(β3, β4), X2(β3, β4) are well defined by β3, β4. We denote the edge invari-
ant by

X(β3, β4) := (J1,J2,K)

The triple X(β3, β4) defines X0(β3, β4), X1(β3, β4), X2(β3, β4) uniquely.

Definition 6.3. The signature of the triple X(β3, β4) = (J1,J2,K) is the
signature of the bilinear form X0(β3, β4). We will write sgn(J1,J2,K). This
is the triangle invariant.

Definition 6.4. We denote by E(n) the set of all triples (J1,J2,K) where
J1,J2,K are of the form as in the Theorem 6.1 with

dimJ1 + dimJ2 + dimK = n

Definition 6.5. If the basis e of L is chosen so that [β3]e = X1(β3, β4),
[β4]e = X2(β3, β4), we will say that in the basis e the pair of forms (β3, β4)
is in the standard form.

6.1. The angle of five Lagrangians. To define the angel invariant in gen-
eral X -coordinates we need an invariant of 5 Lagrangians. In the Section 2
we already defined this invariant only in the case when all triangles have
maximal Maslov index. Now we do it in the general case.

For the 4-tuple (L1, L2, L3, L4) there exists a basis e of L1 such that two
bilinear forms β0 := [L1, L3, L2] and β′0 := [L1, L4, L2] are in the standard
form, i.e. [β0]e = X1(β0, β

′
0), [β′0]e = X2(β0, β

′
0).
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For the 4-tuple (L3, L2, L1, L5) there exists a basis g of L3 such that two
bilinear forms β1 := [L3, L2, L1] and β′1 := [L3, L5, L1] are in the standard
form, i.e. [β1]g = X1(β1, β

′
1), [β′1]g = X2(β1, β

′
1). Let e′ be a basis of L1

such that ω(g, e′) = Id.
Notice, [β0]e′ = [β1]g = X1(β1, β

′
1) in the basis e′. Therefore, we can take

matrices of (p, q)-shape transformations Pβ0β′0 and Pβ1β′1 (for more details see
Appendix A.5), and define e0 := ePβ0β′0 and e1 := e′Pβ1β′1 . Then [β0]e0 =

[β0]e1 = Ipq and there exists U ∈ O(p, q) such that e0 = e1U , where (p, q)
is a signature of β0. We will call this matrix an inner angle in the pentagon
of Lagrangians (L1, L4, L2, L3, L5) (see Figure 6.1).

Figure 6.1.

Remark 6.6. U is well defined only if the bases e, e′ of L1 and g of L3 are
chosen such that

(6.1)
[β0]e = X1(β0, β

′
0) [β′0]e = X2(β0, β

′
0)

[β1]g = X1(β1, β
′
1) [β′1]g = X2(β1, β

′
1)

ω(g, e′) = Id .

We denote [L1, L5, L3, L2, L4]e,e′ := U . We denote by [L1, L5, L3, L2, L4] the
set of all possible [L1, L5, L3, L2, L4]e,e′ when e, e′ satisfy 6.1.

6.2. Definition of X -coordinates. Now we can define the general X -
coordinates for a triangulated surface (S, T ).

Definition 6.7. Let S be a surface with an ideal triangulation T . Let Eor
be the set of oriented edges of T and W be the set of angles of T , F be the
set of all triangles of T .

A system of X -coordinates of rank n on (S, T ) is a map

x : F tEor tW → {(p, q) | p, q ∈ N ∪ {0}, p+ q = n} t E(n) t
⋃

p+q=n

O(p, q)

such that
• x(T ) ∈ {(p, q) | p, q ∈ N ∪ {0}, p+ q = n}. We call x(T ) signature of
the triangle T
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• x(~e) = (J1,J2,K) ∈ E(n) for each ~e ∈ Eor. x(~e −1) = σ(x(~e)),
where σ is the edge reorientation map:

σ : E(n) → E(n)
X(b1, b2) 7→ X(b∗2, b

∗
1)

where b∗1, b∗2 are dual bilinear forms. sgn(x(~e)) = x(r(~e)), i.e. the
signature of x(~e) agree with the signature of the triangle r(~e) which
lies to the right form ~e;
• x(w) ∈ O(p, q) for each w ∈ W , where (p, q) is a signature of the
triangle defined as above to which this angle corresponds. x(w)−1 =
x(w−1). For each positive triple of positive angles (w1, w2, w3) it is

x(w3)x(w2)x(w1) = Id

We denote by X (S, T , n) the set of all X -coordinates of rank n on (S, T ).

Remark 6.8. Since we are going to associate triples (J1,J2,K) to oriented
edges, we will write sometimes x(~e) = X~e = (J1,J2,K) = X(β1, β2) for
some pair of forms (β1, β2). We will also write Xi

~e for i ∈ {0, 1, 2} for
corresponding Xi(β1, β2) because Xi(β1, β2) is completely determined by
the triple (J1,J2,K) and the pair (β1, β2) is not really important.

Positive X -coordinates are imbedded into the space of general X -
coordinates. A coordinate x ∈ X+(S, T , n) is sent to x′ ∈ X (S, T , n) defined
by

• x′(T ) = (n, 0) for all T ∈ F ;
• x′(e) = (diag x(e),∅,∅) for all e ∈ E;
• x′(w) = x(w) for all w ∈W .

6.3. Construction of a decorated representation using X -
coordinates. Let S be a surface with punctures and let T be an ori-
ented ideal triangulation. Given a decorated representation [ρ,D] ∈
RepdT (π1(S, b),Sp(2n,R)), we can lift the decoration D to a map D̃ : P̃ →
Lag(2n,R).

Definition 6.9. A system of X -coordinates x ∈ X (S, T , n) is aid to be
admissible for a representation [ρ,D] ∈ RepdT (π1(S, b), Sp(2n,R)) if

• for each triangle T = (t1, t3, t2) of T̃ , the signature x(T ) agrees with
the signature of the bilinear form [D̃(t1), D̃(t3), D̃(t2)].
• for each oriented edge ~e ∈ Ẽ on the boundary of the
triangles T = (t1, t3, t2) and T ′ = (t2, t4, t1) of T̃ ,
the cross ratio [D̃(t1), D̃(t3), D̃(t2), D̃(t4)] is conjugated to
−X0([L1, L3, L2], [L1, L4, L2])−1;
• for each pentagon in T̃ as in Figure 6.2, the orthogonal matrix x(w)

belongs to the set [D̃(t1), D̃(t5), D̃(t3), D̃(t2), D̃(t4)].

We now construct as in Section 4.2 a map

rep: X (S, T , n)→ Homd
T (π1(S, b), Sp(2n,R)),
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Figure 6.2.

such that, for every x ∈ X (S, T , n), rep(x) is a decorated representation and
x is admissible for the representation rep(x).

For this we let Γ be the graph on the surface introduced in Section 4.2,
see Fig. 6.3.

Figure 6.3.

To every vertex of Γ we associate an edge coordinate by the rule: let the
oriented edge ~r of the triangulation is oriented upwards, then to the point
lying to the right from ~r we associate x(~r), to the point lying to the left from
~r we associate x(~r −1)

We assume that the base point b coincide with one of vertices of Γ. Now,
every element α ∈ π1(S, b) has a representative which is a closed simplicial
path in the graph Γ, so

α = αk ◦ · · · ◦ α1,

where every αi is a path along one edge of Γ.
We associate to every α the matrix

ρ(α) = Ak · · ·A1,
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where Ai is defined as follows:
• If αi is going along an edge of Γ which crosses the oriented edge ~r of
the triangulation from the right to the left assuming that the edge ~r
is oriented upwards, we have

E :=

(
0 −T TΦ

T−1Φ−1 0

)
where Φ and T are matrices associated to x(~r) from the definition of
the back transformation (see Appendix A.4).
• If αi is going along an edge of Γ which crosses the oriented edge ~r of
the triangulation from the left to the right assuming that the edge ~r
is oriented upwards, we have

E := −
(

0 −T TΦ
T−1Φ−1 0

)
where Φ and T are matrices associated to x(~r −1) from the definition
of the back transformation (see Appendix A.4).
• If αi is along an edge of Γ that follows the angle w of the triangula-
tion, consider the matrices

(6.2) Û(X,Y ) :=

(
P TY x(w)TP−TX 0

0 P−1
Y x(w)−1PX

)
Tr(X) =

(
− Id X1

−X1 0

)
Tl(X) = (Tr(X))−1,

where X is the coordinate on the starting vertex of αi, Y is the
coordinate on the ending vertex of αi, PX , PY are matrices of shape
transformations (see Appendix A.5) corresponding to X, resp Y . We
have Ai = Û(X,Y )Tr(X) (resp. Ai = Û(X,Y )Tl(X)) if when going
from αi−1 to αi we are turning to the right (resp. to the left). Notice
that, Û(X,Y )Tr(X) = ((Û−1(Y,X))Tr(Y ))−1.

After multiplication of all these matrices we get a matrix in Sp(2n,R)
for each curve α. So this process gives us a representation ρ ∈
Hom(π1(S, b),Sp(2n,R)).

This representation admits a natural decoration D. To see this, first, we
note that the procedure above works also for non-closed curves.

If b lies in the triangle near to the oriented edge ~r which is adjacent to some
puncture and the peripheral curve is just a circle c around this puncture.
Then going around c we always are turning either to the right or to the
left. Therefore, either Lest or Lfst is preserved by ρ(c) (Figure 6.4). Finally,
for each simple peripheral curve γ around some puncture p with start- and
endpoint b, we can take a point b′ which lies in the triangle adjacent to p.
Then we can decompose γ up to homotopy into a path α from b to b′, circle
c around p and the inverse path α−1 from b′ to b. For α we get Mα. The
matrix corresponding to c preserves some Lagrangian L. Therefore, ρ(γ)
preserves M−1

α .L, and we define D(γ) := M−1
α .L



NONCOMMUTATIVE COORDINATES FOR SYMPLECTIC REPRESENTATIONS 61

Figure 6.4.

For each non-simple peripheral curve which is a power of some simple one,
we define a decoration of non-simple peripheral curve to be the decoration of
the corresponding simple curve. All other non-simple curves are of the form
γ = β−1αnβ, where α is simple closed curve, β is some closed curve. So we
define D(γ) := ρ(β).D(α). By construction, this decorated representation is
a representative in a standard form of its class. So we define rep(x) := (ρ,D).

6.4. The set of X -coordinates associated to a representation. So
far we only constructed a decorated representation given a system of X -
coordinates. Now we describe how, given an ideal triangulation, we can
associate a system of X -coordinates to a decorated representation [(ρ,D)]
so that [rep(x)] = [(ρ,D)]. The procedure described below is very similar to
the case of maximal representations. But in this case, one has to be a bit
more careful because the cross ratio map is in general not diagonalizable.

We take an ideal triangulation T of S and choose b0 ∈ S. Let (ρ,D) ∈
Homd

T (π1(S, b0),Sp(2n,R)) be a decorated representation.
We lift the oriented triangulation T of S to the oriented triangulation T̃

of the universal covering S̃. We also fix a lift b ∈ S̃ of b0 ∈ S. Punctures
are lifted to visual boundary points of S̃ (after choice of some Riemannian
metric of finite area). Using the decoration D, each boundary point can be
decorated by a Lagrangian in a unique way. This decoration is π1(S, b0)-
equivariant.

We consider the graph Γ associated to this triangulation as in Section 6.3,
see Figure 6.3. We can assume that Γ is invariant under the action of π1(S, b0)

on S̃. First, we associate a symplectic basis to each vertex of Γ, a pair (p, q)
to each triangle and an element from E(n) to each oriented edge of the lifted
triangulation T . For each vertex b of Γ there is the unique edge r close to
which this vertex lies and unique triangle T in which b lies. We take an
orientation of the edge ~r such that the vertex b lies to the right from ~r. We
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consider the triangle which is adjacent to T across the edge r. Thus we have
a quadrilateral decorated by Lagrangians (L1, L3, L2, L4). The following
symmetric non-degenerate bilinear forms on L1:

β3 := [L1, L3, L2],

β4 := −[L1, L4, L2]

are well-defined.
We put the pair (β3, β4) to the standard form, i.e. we choose a basis

e = (e1, . . . , en) of L1 such that

([β3]e, [β4]e) = (X1(β3, β4), X2(β3, β4))

Since ω identifies L2 with L∗1, we define a basis f of L2 to be the dual basis
to e. So we get in the notation of the previous section:

L1 = Span(e) = Le, L2 = Span(f) = Lf

L3 = Span(e + fX1(β3, β4)) =: Le,f (X
1(β3, β4))

L4 = Span(e− fX2(β3, β4)) =: Le,f (−X2(β3, β4))

ω(ei, fj) = δij

In this case, we will say that the four tuple (L1, L2, L3, L4) is in standard
position with respect to a symplectic basis (e, f).

We define the invariants x(T ) := sgn(β3) for the triangle T , x(~r) :=
X(β3, β4) for the oriented edge ~r and associate also the symplectic basis
B(b) := (e, f) to the vertex b of Γ.

Because the oriented edge ~r defines the point b uniquely, sometimes we
will say that the basis B(b) is associated to the oriented edge ~r and write
B(~r).

To define the angle coordinate, we consider a pentagon decorated by La-
grangians as on the Figure 6.5. To each oriented diagonal ~r0 and ~r1 of
this pentagon, bases B(~r0) =: (e0, f0) of (L1, L2) and B(~r1) =: (e1, f1) of
(L3, L1) are associated. So we can define the angle invariant x(w) to be
x(w) := [L1, L5, L3, L2, L4]e0,f1 .

Figure 6.5.
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Remark 6.10. 1. The choice of bases B is in general not unique. But it
can be always chosen in a ρ-equivariant way with respect to the action of
Sp(2n,R) on symplectic bases because the lifted decoration by Lagrangians
is ρ-equivariant. We will always assume that B is ρ-equivariant.

2. By construction, the map x is π1(S, b0)-invariant, therefore, x is well-
defined for the triangulation T of S.

3. By construction, x(~r −1) = X(β∗4 , β
∗
3) = σ(X(β3, β4)). So our defini-

tion of the map x for edges is consistent with the definition of X -coordinates.
4. For each oriented edge ~r of triangulation there are two vertices b1, b2

of Γ lying close to ~r. In general, there is a lot of possibilities to define
B(b2) if B(b1) is fixed. We need to fix one of them, which is consistent
to the definition of the map rep, namely with the matrix associated to the
crossing of an edge. We do the following: Assume ~r is oriented upwards,
b1 lies to the right from ~r and b2 lies to the left. Let B(b1) =: (e, f) then
B(b2) := (−fΦT, eΦ−1T−T ) where Φ and T are matrices associated to x(~r)
from the definition of the back transformation (see Appendix A.4).

5. Coordinate which we associate to an edge are in fact connected with
the cross ratio operator in the following way:

[L1, L3, L2, L4]e = [L−1
4 ]f ,e[L3]e,f = −X0(β3, β4)−1

6. This construction does not depend on the choice of a representative
(ρ,D) in the class [ρ,D]. The triple (J1,J2,K) for each edge is uniquely
defined. In contrast, matrices U for each angle are in general not uniquely
defined by the representation ρ. To define U , we have chosen a map B which,
as we have seen, is in general not unique.

Lemma 6.11. Let [ρ,D] ∈ RepdT (π1(S, b), Sp(2n,R)). Consider x ∈
X (S, T , n) constructed from [ρ,D] as above. Then [rep](x) = [ρ,D].

Proof. Notice, the bases on vertices of Γ were chosen in compatible way
with the construction in the previous section, i.e. let b1, b2 be vertices of Γ
connected by an edge e. To e the matrix E is associated as in the previous
section (going along an angle or crossing an edge of triangulation). Then E
maps the basis B(b1) to B(b2).

Therefore, by induction, for every loop α based in b, rep(α)(B(b)) =
B([α]b), where by [α]b we understand the action of [α] ∈ π1(S, b) on vertices
of Γ ⊆ S̃. But the choice of B is ρ-equivariant, i.e. rep(α)(B(b)) = B([α]b) =
ρ(α)B(b). But the action of Sp(2n,R) on symplectic bases is exact, therefore,
rep(α) = ρ(α) for all [α] ∈ π1(S, b), where ρ(α) is written as a matrix with
with respect to the basis B(b). �

Corollary 6.12. The map [rep] is surjective.

Definition 6.13. Let [ρ,D] ∈ RepdT (π1(S, b), Sp(2n,R)), let (ρ,D) be a
representative of [ρ,D]. Assume, the point b lies in the triangle T0 near to the
upwards oriented edge ~e. Assume that peripheral curves αi (see Figure 6.6),
i ∈ {1, 2, 3, 4} are decorated by Lagrangians Li ∈ Lag(2n,R).
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Figure 6.6.

We consider bilinear forms β3, β4 as above. Then there exists a symplectic
basis (e, f) of (R2n, ω) such that

L1 = Span(e) = Le, L2 = Span(f) = Lf

L3 = Span(e + fX1(β3, β4)) =: Le,f (X
1(β3, β4))

L4 = Span(e− fX2(β3, β4)) =: Le,f (−X2(β3, β4))

ω(ei, fj) = δij
The change-of-basis matrix from the standard basis (est, fst) to (e, f) let be
T . Then (ρ′, D′) := (T−1ρT, T−1D) ∈ [ρ,D] is called a representative in
standard form of [ρ,D]. It has the following property:

D′(α1) = Lest , D
′(α2) = Lfst ,

D′(α3) = Lest,fst(X
1(β3, β4)),

D′(α4) = Lest,fst(−X2(β3, β4))

Corollary 6.14. The map rep constructed in the previous section gives us
for each x ∈ X (S, T , n) a representative in standard form.

Remark 6.15. Let (S, T ) be a surface with ideal triangulation. Assume b ∈ S
lies in the triangle T0 near to the oriented edge ~e. We take four peripheral
curves αi, i ∈ {1, 2, 3, 4} as on the Figure 6.6.

Let [ρ,D] ∈ RepdT (π1(S, b),Sp(2n,R)) and x ∈ X (S, T , n) is admissible for
[ρ,D]. Then there exists (ρ,D) ∈ Homd

T (π1(S, b),Sp(2n,R)) a representative
in standard form such that:

D(α1) = Lest ; D(α2) = Lfst

D(α3) = Lest,fst(X
1
0 )

D(α4) = Lest,fst(−X2
0 )

where x(~r) = X0. Moreover, (ρ,D) have the same decoration as rep(x), and
ρ and rep(x) act in the same way on D(πper1 (S, b)).
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Remark 6.16. Let x ∈ X (S, T , n) be admissible for [ρ1, D1] and for [ρ2, D2].
Then there exist (ρ1, D1) ∈ [ρ1, D1] and (ρ2, D2) ∈ [ρ2, D2] representatives
in a standard form such that D1 = D2. In particular, the decoration of
rep(x) coincides up to Sp(2n,R)-action with decoration of each decorated
representation for which x is admissible.

Remark 6.17. If x ∈ X (S, T , n) is admissible X -coordinates for [ρ,D] ∈
RepdT (π1(S, b), Sp(2n,R)), then in general it is wrong that [rep(x)] = [ρ,D].

As we have seen, angle coordinates are not uniquely defined. Sometimes
different collections of angle coordinates define the same representation. Now
we are going to find out how the angles can be changed so that the repre-
sentation stays the same.

Figure 6.7.

We take two adjacent by an edge e triangles. The coordinate on the edge
is Xe (oriented as on fig. 6.7). The coordinate associated to the opposite
orientation of e we denote by X̃e. Signature of right triangle assume to
be (p, q) = sgn(X1

e ) = sgn(X̃2
e ), signature of left triangle assume to be

(p′, q′) = sgn(X2
e ) = sgn(X̃1

e ). We also assume that all angles are oriented
counterclockwise with respect to the triangle.

Theorem 6.18. Let x ∈ X (S, T , n). Let us change angle coordinates along
the edge e in a following way:

(6.3) U ′1 = WU1, V
′

1 = V1W
′−1, U ′2 = U2W

−1, V ′2 = W ′V2

where
W ∈ O(p, q) ∩O(P−TXe

X2
eP
−1
Xe

)

W ′ := D−1W TD

D := P−TXe
ΦXeTXeP

−1
X̃e

This gives us another x′ ∈ X (S, T , n). Then [rep(x)] = [rep(x′)].
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Proof. First, we need the following proposition:

Proposition 6.19.

W ′ ∈ O(p′, q′) ∩O(P−T
X̃e

X̃2
eP
−1
X̃e

)

Proof. First, we note that D−T Ip′q′D−1 = PXe(X
2
e )−1P TXe

:

D−T Ip′q′ = PXeΦ
−1
Xe
T−TXe

P T
X̃e
Ip′q′ = PXeΦ

−1
Xe
T−TXe

X̃1
eP
−1
X̃e

=

= [(X2)−1ΦT = Φ−1T−T X̃1] = PXe(X
2
e )−1ΦXeTXeP

−1
X̃e

=

= PXe(X
2
e )−1P TXe

D

Therefore,

W ′T Ip′q′W
′ = DTWD−T Ip′q′D

−1W TD = DTWPXe(X
2
e )−1P TXe

W TD =

= [W ∈ O(P−TXe
X2
eP
−1
Xe

)] = DTPXe(X
2
e )−1P TXe

D = Ip′q′

So W ′ ∈ O(p′, q′).
Second, we note that D−TP−T

X̃e
X̃2
eP
−1
X̃e
D−1 = Ipq:

D−T (P−T
X̃e

X̃2
eP
−1
X̃e

) = PXeΦ
−1
Xe
T−TXe

P T
X̃e
P−T
X̃e

X̃2
eP
−1
X̃e

= PXeΦ
−1
Xe
T−TXe

X̃2
eP
−1
X̃e

=

= [X1ΦT = Φ−1T−T X̃2] = PXeX
1
eΦXeTXeP

−1
X̃e

= [P TXe
IpqPXe = X1

e ] = IpqD

Therefore,

W ′T (P−T
X̃e

X̃2
eP
−1
X̃e

)W ′ = DTWD−T (P−T
X̃e

X̃2
eP
−1
X̃e

)D−1W TD =

= DTW T IpqWD = [W ∈ O(p, q)] = DT IpqD = P−T
X̃e

X̃2
eP
−1
X̃e

So W ′ ∈ O(P−T
X̃e

X̃2
eP
−1
X̃e

).
�

Using the last proposition, it is easy to calculate that:

V̂1TrEXeÛ1 = V̂ ′1TrEXeÛ
′
1

Û2TrEXe V̂2 = Û ′2TrEXe V̂
′

2

V̂1TrEX̃e
Û−1

2 = V̂ ′1TrEX̃e
Û ′1

So holonomies of all curves are not changed. �

Corollary 6.20. Let x, x′ ∈ X (S, T , n) such that rep(x) = rep(x′). Let
w ∈W be an angle which is adjacent to some oriented edge ~e. Then angle co-
ordinates of x along ~e can be changed as above to coordinates x′′ ∈ X (S, T , n)
such that x′(w) = x′′(w) and x(w′) = x′′(w′) for all angles w′ which are not
adjacent to ~e

Lemma 6.21. The only possible changes of angle coordinates so that the
reconstructed representation does not change are given by formulas 6.3.
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Proof. (Sketch) We take the surface S of genus g and k punctures and fix
the triangulation and the base point as on the picture. For another choice
of triangulation the proof is similar.

We take x, x′ ∈ X (S, T , n) such that rep(x) = rep(x′). We assume that
x, x′ define two different collections of angles {Ui} and {U ′i}. Now we show
that by correction of angles {Ui} by formulas above we can get the collection
{U ′i}.

Figure 6.8.

Using Corollary 6.20 we correct all upper angles (U5, U6, U1, U2, U11, . . .
see Figure 6.8) getting x′′ ∈ X (S, T , n) such that rep(x) = rep(x′) = rep(x′′).
Note, that the number of these corrected angles agree with the total number
of (non-oriented edges) since we correct each angle along exactly one edge.
It makes automatically that some other angles agree (U7, U8, . . . ) because
product of angles in one triangle is always Id. To see that all other agree,
it is enough to look at generators of π1(S, b) (α1, β1, . . . on Figure 6.8).
Since their holonomies agree for rep(x) = rep(x′) = rep(x′′), all other angles
(U9, U3, U4, U10, . . . ) agree automatically. So we get x = x′′

�

Remark 6.22 (Changing of X -coordinates by a flip). As we have see already
for positive X -coordinates, it is difficult to write an explicit formula of change
of coordinates by a flip. In the general case, it is even more difficult. However
we will see in Section 8.4, using A-coordinates we can give explicit formulas,
which tell us how the X -coordinates change.

6.5. “Degenerate representations” of constant signature. In this sec-
tion we describe very explicitly the coordinates for degenerate representa-
tions of constant signature, these correspond to representation that factor
through embeddings

SL(2,R)⊗Z2 O(p, q) ↪→ Sp(2n,R)
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PSL(2,K)× PO(p, q) ↪→ PSp(2n,R)

where p + q = n, Z2 = {1,−1} is the group with two elements considered
as a multiplicative subgroup of R∗. Z2 can be embedded into the center of
SL(2,R) and O(p, q) diagonally , so the tensor product is well-defined.

If we take a matrix

A =

(
a b
c d

)
∈ SL(2,R)

then

Â =

(
a Idn bIpq
cIpq d Idn

)
∈ Sp(2n,R)

Also if we take some matrix U ∈ O(p, q) then

Û =

(
U−T 0

0 U

)
∈ Sp(2n,R)

The maps ·̂ are in both cases injective homomorphisms. Because IpqU =

U−T Ipq , matrixes Â and Û commute. That give us an homomorphism

φ : SL(2,R)×O(p, q)→ Sp(2n,R)((
a b
c d

)
, U

)
7→ ÂÛ =

(
aU−T bIpqU
cIpqU

−T dU

)
Ker(φ) = {±(Id, Id)} ∼= Z2. So we get embeddings

SL(2,R)⊗Z2 O(p, q) ↪→ Sp(2n,R)

PSL(2,R)× PO(p, q) ↪→ PSp(2n,R)

We will identify pair (A,U) ∈ SL(2,R)×O(p, q) up to common sign and
ÂÛ ∈ Sp(2n,R) and also pair (A,U) ∈ PSL(2,R) × PO(p, q) and ÂÛ ∈
PSp(2n,R).

Now we take some surface S with punctures and an ideal triangulation
and a base point b ∈ S as above.

Lemma 6.23. Let x ∈ X (S, T , n) be given. We assume that for x all X0
e

are scalar matrices for all edges e. Then the reconstructed representation

rep(x) = ρ : π1(S, b)→ SL(2,R)⊗Z2 O(p, q)

Moreover, ρ = ρ1 ⊗Z2 ρ2, where for each loop γ, ρ2(γ) is the product of
corresponding to γ angle coordinates, ρ1 : π1(S, b)→ SL(2,R).

Proof. ρ(γ) is a product of matrices as EXe , Tr, Tl, Û , where X0
e=le Id for

some le 6= 0. Therefore,

EXe = φ

((
0 −

√
|le|√

|le|−1 0

)
, Id

)
Tr = φ

((
−1 sgn(le)

− sgn(le) 0

)
, Id

)
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Tl = φ

((
0 − sgn(le)

sgn(le) −1

)
, Id

)
Û = φ(Id, U)

Since Û commutes with EΦ, Tr, Tl, we have

ρ(γ) ∈ SL(2,R)⊗Z2 O(p, q)

and ρ2(γ) =
∏k
i=1 Ui is a product of angle coordinates. �

Corollary 6.24. Let a collection of coordinates on the triangulate surface S
be given. We assume that X0

e are scalar matrices for all edges e. Then the
reconstructed representation

ρ : π1(S, b)→ PSL(2,R)× PO(p, q)

Moreover, for each curve γ ρ2(γ) = Pr2(ρ(γ)) is a product of corresponding
to this curve angle coordinates.

For the lemma 6.23 it is possible to prove some “incomplete” converse
lemma:

Lemma 6.25. Let

ρ : π1(S, b)→ PSL(2,R)× PO(p, q)

and there exist a decoration D such that

(ρ1, D) := (Pr1(ρ), D) ∈ Homd
T (π(S, b),PSL(2,R))

Then D′ := D ⊗ Rn is a decoration for ρ. Moreover, for all x ∈ X (S, T , n)
such that [rep(x)] = [ρ,D′] edge coordinates X0

e for all edges e are scalar
matrices.

Proof. For some peripheral curve γ let v := D(γ) be an eigenvector of ρ1(γ).
Then by definition of action of PSL(2,R)×PO(p, q) on R2⊗Rn Lagrangian
Span(v)⊗ Rn is an eigenspace of ρ(γ). So D′ is well-defined.

If we have four Lagrangians of the form Vi = Span(vi)⊗Rn, i = 1, . . . , 4,
then the corresponding cross ratio map is:

[V1, V2, V3, V4] = [v1, v2, v3, v4] IdV1 ,

which matrix is scalar in each basis of V1. So for corresponding e we have
X0
e = [v1, v2, v3, v4] Id. �

Corollary 6.26. Let

ρ : π1(S, b)→ SL(2,R)⊗Z2 O(p, q)

be a representation, ρ = ρ1 ⊗Z2 ρ2, where

(ρ1, D) ∈ Homd
T (π(S, b),SL(2,R))

for some decoration D. Then D′ := D⊗Rn is a decoration for ρ and for all
x ∈ X (S, T , n) such that [rep(x)] = [ρ,D′] edge coordinates X0

e for all edges
e are scalar matrices.
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Remark 6.27. This lemma shows that edge coordinates “know” nothing about
the second O(p, q)-part of representation. For this part angle coordinates are
responsible.

Remark 6.28. Remember that since π1(S) is free with 2g+ k− 1 generators,
the following spaces are homeomorphic:

Hom(π1(S),O(p, q)) ∼= O(p, q)2g+k−1

Rep(π1(S),O(p, q)) ∼= O(p, q)2g+k−1/O(p, q)

Corollary 6.29. The following spaces are homeomorphic:

DdT (π1(S), Sp(2n,R)) ∼= Rep(π1(S, b),O(n)) ∼= O(n)2g+k−1/O(n)

where DdT (π1(S),Sp(2n,R)) is the subspace of Md
T (π1(S),Sp(2n,R)) of all

degenerate maximal representations with edge coordinates equal to (1, . . . , 1).

7. X -coordinates for representations into central extensions

We introduced X -coordinates for decorated representations into Sp(2n,R)
using invariants of Lagrangian subspaces. As we remarked before, the action
of Sp(2n,R) on Lag(2n,R) is not effective, but factors through PSp(2n,R).
Therefore, the construction of X -coordinates works as well for decorated
representations into PSp(2n,R),The notions of decoration and transversality
are well-defined because the action of Sp(2n,R) on Lag(2n,R) is just the lift
of the action of PSp(2n,R) on Lag(2n,R). We only have to modify the angle
invariants, as they now take values in PO(p, q).

We can then similarly define a map rep from X -coordinates to the space
of transverse decorated representations RepdT (π1(S, b),PSp(2n,R)).

Note that Sp(2n,R) is a central extension of PSp(2n,R) by the abelian
group Z2. In this sections we extend the construction of X -coordinates to
representations into arbitrary central extensions of PSp(2n,R). The most
interesting cases are the connected coverings of PSp(2n,R) are classified by
the subgroups of Z, e.g. Sp(2n,R) corresponds to 2Z, the metaplectic group
to 4Z, the universal covering to (0).

Let G be a central extension of PSp(2n,R) by an abelian group A that
is determined by a cocycle c ∈ H2(PSp(2n,R), A). We fix a bijection
θ : PSp(2n,R) × A → G. We denote the restriction of θ on the subset
PSp(2n,R)× {0} ∼= PSp(2n,R) by ι as above.

Let S be a surface with punctures as above, T be an ideal triangu-
lation of S. Each representation ρ ∈ Hom(π1(S), G) projects to some
representation ρ′ ∈ Hom(π1(S),PSp(2n,R)). Assume ρ′ admits a dec-
oration D which is transverse with respect to T . If D is fixed, then
(ρ′, D) ∈ Homd

T (π1(S),PSp(2n,R)).

Definition 7.1. The pair (ρ,D) constructed as above is called decorated
representation into the central extension G transverse with respect to T . The
set of all decorated representation into the central extension G transverse
with respect to T is denoted by Homd

T (π1(S), G).
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Definition 7.2. We denote

RepdT (π1(S), G) := Homd
T (π1(S), G)/G

Definition 7.3. A representation ρ ∈ Hom(π1(S), G) is called maximal if it
projects to a maximal representation ρ′ ∈ Hommax(π1(S),PSp(2n,R)). The
space of all maximal representations into G is denoted by Hommax(π1(S), G).
The space of all maximal decorated representations into G is denoted by
Homd

max(π1(S), G).

Definition 7.4. We denote

M(π1(S), G) := Hommax(π1(S), G)/G

Md(π1(S), G) := Homd
max(π1(S), G)/G

Consider the embedding:

ψ : PO(p, q) ↪→ PSp(2,R)
U 7→ diag(U,U−T )

Then there exists the unique subgroup G(p, q) < G such that A < G(p, q)
and projects to ψ(PO(p, q)).

Before we give the definition of X -coordinates for central extension, we
recall that E(n) is the set of all triples (J1,J2,K) where J1,J2,K are of the
form as in the Theorem 6.1 with

dimJ1 + dimJ2 + dimK = n.

Definition 7.5 (X -coordinates for central extension). Let S be a surface
with an ideal triangulation T . Let Eor be the set of oriented edges of T and
W be the set of angles of T , F be the set of triangles of T .

A system of X -coordinates of rank n for the central extension G with
respect to T is a map

x : F tEor tW → {(p, q) | p, q ∈ N ∪ {0}, p+ q = n} t E(n) t
⋃

p+q=n

G(p, q)

such that
• the triangle invariant x(T ) takes values in {(p, q) | p, q ∈ N∪{0}, p+
q = n}. We call x(T ) also signature of the triangle T
• the edge invariant x(~e) is given by x(~e) = (J1,J2,K) ∈ E(n) for each
~e ∈ Eor. X (~e−1) = σ(X (~e)), where σ is the edge reorientation map:

σ : E(n) → E(n)
X(b1, b2) 7→ X(b∗2, b

∗
1)

where b∗1, b∗2 are dual bilinear forms to b1, b2. sgn(x(~e)) = x(r(~e)),
i.e. the signature of x(~e) agree with the signature of the triangle r(~e)
which lies to the right form ~e;
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• the angle invariant x(w) takes values in G(p, q) for each w ∈ W ,
where (p, q) is a signature of the triangle defined as above which this
angle corresponds to. U(w−1) = U(w)−1. For each positive triple of
positive angles (w1, w2, w3) is subject to the condition

U(w3)U(w2)U(w1) = Id .

We denote by XG(S, T , n) the set of all X -coordinates of rank n for the
central extension G on (S, T ).

By the same procedure as for X -coordinates for Sp(2n,R), see Section 6.3,
we can construct a map repG from the space of X -coordinates to the space of
decorated homomorphism Homd

T (π1(S), G), which induces a surjective map

[repG] : XG(S, T , n)→ RepdT (π1(S), G).

Using the map [repG] restricted to the positive locus of XG(S, T , n), i.e.
the subset of XG(S, T , n) such that all triangle invariants are (n, 0), as in the
Section 5.2.1, we can study the homotopy type of Md(π1(S), G). Namely,
we can get the following result:

Theorem 7.6. The space of decorated maximal representations
Md(π1(S), G) is homotopically equivalent to G(n, 0)2g+k−1/G(n, 0),
where g is the genus of S, k is the number of punctures and the quotient is
taken by the action of G(n, 0) on G(n, 0)2g+k−1 by simultaneous conjugation.

8. A-coordinates for framed representations

In this section we introduce A-coordinates associated to framed represen-
tations of π1(S). The A-coordinates endow the space of framed represen-
tations with a structure of non-commutative cluster algebra, as defined by
Berenstein–Retakh [2]. Every triangulation gives a set of cluster functions
into the non-commutative algebra of n×n matrices, and when an edge of the
triangulation is flipped, the cluster functions change with the formulae given
in [2]. In this way we give a geometric interpretation to the algebraic theory
developed there. We also explain the relation between A-coordinates and X -
coordinates and give precise formulas for the flip in both coordinates. Before
we focus on framed representations we just consider framed triangulations.

Remark 8.1. In this section, it is not essential at all that we are working
over real numbers. We can replace the field R by any other field. But to be
consistent with the previous sections, we will provide the construction for
the group Sp(2n,R).

8.1. Oriented framed triangulations and their representations. Let
C ⊂ R2 be a disc, and consider an oriented triangulation T of C, i.e. an em-
bedded oriented graph T = (W,E) such that Cr

⋃
E is a union of triangles.

For each edge e an orientation is fixed, i.e. we define a map e : {0, 1} → W
such that {e(0), e(1)} = ∂e.

Definition 8.2. A triangulation is called framed decorated if
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• for each vertex w ∈W a framed n-dimensional subspace (L(w), v(w))
of R2n is fixed
• L(e(0)) and L(e(1)) are transverse for each edge e ∈ E for each edge
e.

We denote v(e) := (v(e(0)), v(e(1))).

For each edge e ∈ E we take the midpoint p(e) of e and then consider the
following oriented graph Γ = (P,R): the set of vertices is P = {p(e) | e ∈ E},
two vertices p(e) and p(e′) are connected by an edge from R if and only if
e and e′ belong to the same triangle of T . We also fix some orientation of
edges of Γ. So we have a basis v(p(e)) := v(e) for each vertex from P

A path in Γ is a sequence of vertices so that each two adjacent vertices
are connected by an edge. We denote by P(Γ) the set of all paths of Γ. Our
goal is to construct a map ρ : P(Γ) → GL(2n,R) such that for each path
γ = p(e1) . . . p(ek) holds:

ρ(γ)v(e1) = v(ek)

By this property this map is uniquely defined.
To do this, we define a labeling of each edge of Γ by GL(2n,R) matrices

A(r) for all r ∈ R, where A(r) is the change of basis matrix from the basis
v(r(0)) to v(r(1)). And define:

ρ(γ) := A(r1)ε1 . . . A(rk)
εk

where εi = 1 if we go along ri with respect to its orientation, εi = −1
otherwise. By construction, this map has the necessary property.

Corollary 8.3. Let a triangulation T with corresponding graph Γ = (P,R)
be given. We fix p0 = p(e0) ∈ P and assume that v(e0(0)), v(e0(1)) and
ρ are given. Then we can reconstruct the whole oriented framed decorated
triangulation.

Remark 8.4. Let (R2n, ω) be a symplectic vector space. For each path
γ = p(e0) . . . p(ek) such that ω(v(ek(0)), v(ek(1))) = ω(v(e0(0)), v(e0(1)))
the matrix ρ(γ) ∈ Sp(2n,R).

8.2. Oriented framed triangulations and A-coordinates. In this sec-
tion we assume that a standard symplectic form ω on R2n is given. Consider
a framed by Lagrangians decorated triangulation. We can define a symplec-
tic Λ-length associated to each edge using the formula:

Λe = ω(v(e(0)), v(e(1)))

By given framed decorated triangulation the symplectic Λ-length for each
edge is uniquely defined.

Definition 8.5. Let T be a triangulation. The map

a : E → GL(n,R)

is called A-coordinates of rank n if it satisfies the triangle relation for sym-
plectic Λ-lengths (see Section 2.5).
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Lemma 8.6. The oriented triangulation with associated A-coordinates de-
fines an oriented framed decorated triangulation uniquely up to action of
Sp(2n,R) on Lagfr(2n,R).

Proof. First, we reconstruct the map ρ : P(Γ) → Sp(2n,R). To do this, we
have to construct Ar for all r ∈ R. Without restriction of generality, we can
assume that r goes from p(e) to p(e′) so that e(0) = e′(0). We denote:

w0 := e(0) = e′(0), w := e(1), w′ := e′(1)

Let e′′ be an edge connecting w and w′. Without restriction of generality,
assume e′′ goes from w to w′.

Because of equality

(v(w0), v(w′)) = (v(w0), v(w))Ar

we can see that
Ar =

(
Id X
0 Y

)
and v(w′) = v(w0)X + v(w)Y . But

ce = ω(v(w0), v(w)), ce′ = ω(v(w0), v(w′)), ce′′ = ω(v(w), v(w′))

therefore,

ce′ = ω(v(w0), v(w′)) = ω(v(w0), v(w0)X + v(w)Y ) =

= ω(v(w0), v(w))Y = ceY

ce′′ = ω(v(w), v(w′)) = ω(v(w), v(w0)X + v(w)Y ) =

= ω(v(w), v(w0))X = −cTeX
So we can calculate X and Y :

X = −c−Te ce′′ , Y = c−1
e ce′

As =

(
Id −c−Te ce′′
0 c−1

e ce′

)
and reconstruct ρ.

In the last step, we fix some p0 = p(e0) ∈ P and try to reconstruct
v(e0(0)), v(e0(1)) up to action of Sp(2n,R). Since Sp(2n,R) acts transitively
on Lagfr(2n,R), we can choose as v(e0(0)) the first n vectors of the standard
symplectic basis of (R2n, ω). They span some Lagrangian subspace. Since
Sp(2n,R) acts transitively on pairs of transverse Lagrangians, we can choose
as L(e0(1)) the span of the last n basis vectors of the standard symplectic
basis of (R2n, ω). We denote by ṽ(e0(1)) the last n basis vectors of the
standard basis of R2n.

Because v(e0(1)) spans L(e0(1)), it is v(e0(1)) = ṽ(e0(1))Z. Since

ce0 = ω(v(e0(0)), v(e0(1))) = ω(v(e0(0)), ṽ(e0(1))Z) = Z

we get a basis v(e0(1)) = ṽ(e0(1))ce0 . By Corollary 8.3 the oriented framed
decorated triangulation can be reconstructed. �
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Remark 8.7. For oriented triangulations with A-coordinates, all properties
of symplectic Λ-lengths as the exchange relation, the triangle relation hold.

8.3. Framed representations and A-coordinates.

Definition 8.8. Let (S, T ) be a punctured surface with an oriented ideal
triangulation. The map

a : E → GL(n,R)

is called A-coordinates of rank n if it satisfies the triangle relation for sym-
plectic Λ-lengths (see Section 2.5). The set of all A-coordinates on (S, T ) is
denoted by A(S, T , n).

Remark 8.9. Because of the triangle relation the set A(S, T , n) for n > 1
is not isomorphic to GL(n,R)#E . It is a closed subset of GL(n,R)#E of
positive codimension.

Note that in the case of framed representations, the situation is consider-
ably simpler than for decorated representations. We have

Theorem 8.10. There is a 1-1 correspondence between A(S, T , n) and
Xfr
T (π1(S, b), Sp(2n,R)).

Proof. Let (ρ,D) ∈ Homfr
T (π1(S, b),Sp(2n,R)). We can lift the oriented

triangulation T together with the decorationD to the universal covering of S.
This gives us a ρ-equivariant oriented framed decorated triangulation T̃ on
H2. By this triangulation T̃ a π1(S, b)-invariant collection of A-coordinates
on T̃ can be defined. Therefore, this collection of A-coordinates is well-
defined on the oriented triangulation T of S.

If we have a collection of A-coordinates on an oriented triangulation T
of S, we can lift it to the π1(S, b)-invariant collection of A-coordinates on
T̃ on H2. We can reconstruct (ρ′, D′) ∈ Homfr

T (π1(S, b), Sp(2n,R)) using
the procedure described in Section 8.2. If (ρ′, D′) was reconstructed using
A-coordinated which was got by the representation (ρ,D), then [ρ′, D′] =

[ρ,D] ∈ Xfr
T (π1(S, b),Sp(2n,R)) because up to symplectic change-of-basis

they act in the same on a fixed symplectic basis. �

8.4. X -coordinates, A-coordinates and cluster varieties. We now de-
scribe the relation between X -coordinates and A-coordinates, and derive
explicit formulas for the flip.

Recall that in Section 2.7 we expressed the cross-ratio of four framed
Lagrangians in terms of the symplectic Λ-lengths (Lemma 2.20). Namely,
let

Let (Li,vi) ∈ Lagfr(2n,R), with i ∈ {1, 2, 3, 4}, be four pairwise trans-
verse framed Lagrangians. Then

[L1, L2, L3, L4]v1 = Λ−1
41 Λ43Λ−1

23 Λ21,

where [L1, L2, L3, L4]v1 denotes the cross-ratio expressed in the basis v1.
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Definition 8.11. We denote

CR1234 = −Λ−1
41 Λ43Λ−1

23 Λ21

and call this expression the cross ratio in the basis v1.

For A-coordinates the change of coordinates under a flip is given by the
Exchange relation, see Proposition 2.17,

Λ24 = Λ23Λ−1
13 Λ14 + Λ21Λ−1

31 Λ34.

A nice formula for the flip in X -coordinates can then be given by making
a local change of coordinates.

Proposition 8.12. Consider eight framed Lagrangians (Li,vi), with i ∈
{1, . . . , 8}, as in Figure 8.1. To each inner edge of the 8-gon, we associate a
cross ratio. We have the following formulas for the flip along the edge L1L2:

Figure 8.1.

CR4231 = Λ−1
24 · CR

−T
2314 · Λ24

CR2534 = (Id +CR2314)CR2531

CR4316 = CR4216(Id +CR−1
4231)

CR2348 = CR2148(Id +CR−1
2314)−1

CR3714 = (Id +CR3142)−1CR3712

Note that in the case n = 1, these are precisely the formulas for the
flip, see for example [10, Formula (1.30)], here we have a non-commutative
generalization of them.

Proof.
CR2314 = −Λ−1

42 Λ41Λ−1
31 Λ32

If we do a flip, then we get

CR4231 = −Λ−1
14 Λ13Λ−1

23 Λ24 = [Λji = −Λ−Tij ] = Λ−1
24 · CR

−T
2314 · Λ24

For another cross ratio we have:

CR2531 = −Λ−1
12 Λ13Λ−1

53 Λ52
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CR2534 = −Λ−1
42 Λ43Λ−1

53 Λ52 = −Λ−1
42 (Λ41Λ−1

21 Λ23 + Λ42Λ−1
12 Λ13)Λ−1

53 Λ52 =

= −(Λ−1
42 Λ41 · Λ−1

21 Λ23 · Λ−1
53 Λ52 + (Λ−1

42 Λ42)Λ−1
12 Λ13Λ−1

53 Λ52) =

= CR2531 − Λ−1
42 Λ41(Λ−1

31 Λ32Λ−1
32 Λ31)Λ−1

21 Λ23(Λ−1
13 Λ12Λ−1

12 Λ13)Λ−1
53 Λ52 =

= CR2531 − (Λ−1
42 Λ41Λ−1

31 Λ32)[Λ−1
32 Λ31Λ−1

21 Λ23Λ−1
13 Λ12](Λ−1

12 Λ13Λ−1
53 Λ52) =

= CR2531 + CR2314CR2531

The proof for other cross ratios is similar. �

Appendix A. Spectral theorem with signature

A.1. About correspondence between pairs of bilinear forms and
symmetric linear maps. Let V be n-dimensional vector space over some
field K, b1, b2 be symmetric non-degenerate bilinear forms. We consider
these forms as linear isomorphisms bi : V → V ∗. Then we can consider the
linear isomorphism f : V → V such that f := b−1

1 ◦ b2.

Lemma A.1. The map f is symmetric with respect to the form b1 and for
all x, y ∈ V

b2(x, y) = b1(x, fy)

Proof. We denote by capital letters matrices of corresponding tensors with
respect to some fixed basis in V .

b1(x, fy) = XTB1(FY ) = XTB1(B−1
1 B2Y ) = XTB2Y = b2(x, y)

b1(fx, y) = (FX)TB1Y = (B−1
1 B2X)TB1Y = XTB2Y =

= b2(x, y) = b1(x, fy)

BT
i = Bi, i = 1, 2 because the forms are symmetric. �

A.1.1. Definite pairs.

Definition A.2. We say that the pair of forms (b1, b2) is definite if they
are simultaneously diagonalizable i.e. there exist a basis of V in which both
forms are diagonal.

Lemma A.3. Pair (b1, b2) is definite if and only if f is diagonalizable. In
this case basis can be chosen so that in this basis all three tensors b1, b2, f
have diagonal matrices.

Proof. (⇒) If (b1, b2) is definite then f = b−1
1 ◦ b2 is diagonal because b1, b2

are diagonal in chosen basis of V and corresponding dual basis of V ∗.
(⇐) Let e = (e1, . . . , en) some basis of V such that f(ei) = aiei.

ajb1(ei, ej) = b1(ei, fej) = b1(fei, ej) = aib1(ei, ej)

If ai 6= aj then b(ei, ej) = 0. If ai = aj = a ∈ K then we consider the
maximal subspace Va such that fw = aw for all w ∈ Va. Va = Span(ei |
fei = aei), I := {i | fei = aei}. We can diagonalize b1 on W . Without loss
of generality we can assume that (ei | i ∈ I) is exactly this basis of W . We
do this for all a ∈ Spec(f).
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So we get a basis (ei | i ∈ {1, . . . , n}) such that b1(ei, ej) = 0 for i 6= j
and fei = aiei. Therefore,

b2(ei, ej) = b1(fei, ej) = aib1(ei, ej) = 0

for i 6= j �

Corollary A.4. If K = R then we can choose a basis e so that [b1]e = Ipq
where (p, q) is signature of the form b1.

A.1.2. Definite pairs over R.
Corollary A.5. If K = R and the pair (b1, b2) is definite and [b1]e = Ipq
in some basis e then there exists a (p, q)-orthogonal change-of-basis matrix
T ∈ O(p, q) which puts f to diagonal form, i.e. [f ]e′ = T−1FT is diagonal
in the basis e′ = eT and [b1]e′ = T T [b1]eT = [b1]e = Ipq.

So we have showed that a definite pair of real bilinear forms is determined
up to change of basis by a signature (p, q) of the first form and a diagonal
matrix F , i.e. there exists a basis e so that

[b1]e = Ipq, [b2]e = IpqF

If such a basis is found, then we will say that the pair of forms is in standard
form. It is easy to see that this basis is uniquely defined up to transformation
T ∈ O(p, q) ∩O(IpqF ).

Since F is diagonal and non-degenerate, we can consider the coordinate-
wise square root

Φ :=
√
|F |−1.

So we get that this change-of-basis matrix puts IpqF to Ip′q′ : Ip′q′ = ΦTFΦ

A.1.3. Non-definite pairs over R with real eigenvalues. Non-definite pairs
over algebraic closed fields. Jordan blocks. Now we want to find some analog
of standard form for non-definite pairs.

Lemma A.6 (Jordan block over R). Let [f ]e = J be a Jordan block with
eigenvalue λ in some basis e of V . Then there exists another basis e′ of V
such that [f ]e′ = J and either [b1]e′ = Cn or [b1]e′ = −Cn where

Cn =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


Proof (Only idea). First, it is easy to see that JTB1 = B1J imply that all
elements of B1 = (bij) over the counterdiagonal are zero and, moreover, the
matrix B1 has a form

B1 =


0 0 . . . 0 a1

0 0 . . . a1 a2

. . .
0 a1 . . . an−2 an−1

a1 a2 . . . an−1 an


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Then we can rescale the basis such that a1 = sgn(a1). Then we can
successively correct the basis using the following change-of-basis matrices

1 b 0 . . . 0 0
0 1 b . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . b 0
0 0 0 . . . 1 b
0 0 0 . . . 0 1


,



1 0 b . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 b
0 0 0 . . . 1 0
0 0 0 . . . 0 1


, . . . ,



1 0 0 . . . b 0
0 1 0 . . . 0 b
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 0
0 0 0 . . . 1 0
0 0 0 . . . 0 1


,



1 0 0 . . . 0 b
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 0
0 0 0 . . . 1 0
0 0 0 . . . 0 1


for appropriate b to “kill” ai for i > 1 and so get a form for B1 as in lemma.

�

Corollary A.7 (Jordan block over algebraic closed field). Over algebraic
closed fields the basis can be chosen (by rescaling by i) so that

Cn =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


Lemma A.8 (Over R or algebraic closed field). The basis which was found
in the previous lemma (in this lemma denoted by e) is unique up to multipli-
cation of all vectors with ±1.

Proof. Let u = (ui) be another basis with necessary property.
Step 1. By induction we will show that

uk =

k∑
i=1

ck−i+1ei

1. f(u1) = λu1, u1 is an eigenvector of f . But all eigenvectors of f are
ce1, c ∈ R. Therefore, u1 = c1e1 for some c1 6= 0.

2. We assume that us =
∑s

i=1 cs−i+1ei for all s < k. f(uk) = auk + uk−1,
therefore g(uk) = f(uk)− auk ∈ Ruk−1 ≤ 〈e1, . . . , ek−1〉. If we assume

uk =

n∑
i=1

ckiei,

then

g(uk) =
n∑
i=2

ckiei−1 ∈ 〈e1, . . . , ek−1〉 .
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Therefore cki = 0 for all i > k. Moreover

g(uk) = uk−1 =
k−1∑
j=1

ck−1−j+1ej = [above] =
k∑
i=2

ckiei−1

Therefore, cki = ck−i+1, and so we have

uk =

k∑
i=1

ck−i+1ei

Step 2. Now we show that c1 = ±1 and ci = 0 for i > 1. To do that we
use the form b1. By assumption

b1(ui, uj) = b1(ei, ej) = δi+j,n+1

b1(uk, ul) =
k∑
i=1

l∑
j=1

ck−i+1cl−j+1b(ei, ej) =
k∑
i=1

ck−i+1cl−n−1+i+1

We assume here ci = 0 for i ≤ 0. If we take l = n, then we get

b1(uk, un) =

k∑
i=1

ck−i+1ci

For k = 1:
1 = b1(u1, un) = c1c1

Therefore, c1 = ±1. Further, we take k = 2,

0 = b1(u2, un) = c2c1 + c1c2

Therefore, c2 = 0. And so on by induction, we assume ci = 0 for all 1 < i < k
for some k, then

0 = b1(uk, un) = ckc1 + ck−1c2 + · · ·+ c1ck

Therefore ck = 0 for all k 6= 1. �

Corollary A.9.
O(Cn) ∩O(CnJn) = {± Idn}

Let b1, b2 be two bilinear forms in some vector space V of dimension n
over R such that [b1]e = wC = wCn, [b2]e = CJ in some basis e, where J is
a Jordan block with eigenvalue l, w = ±1.

We want to find another basis v of V such that

[b∗1]v∗ = sgn(lw)[b2]e

[b∗2]v∗ = sgn(lw)[b1]e

If we express these conditions in matrix form then we need some matrix Φ
such that (note that C = C−1)

sgn(lw)ΦCΦT = CJ

sgn(lw)Φ(CJ)−1ΦT = C
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Lemma A.10. Φ = ±ΦT

Proof. We assume lw > 0. The case lw < 0 is similar.

ΦCΦT = CJ

Φ(CJ)−1ΦT = C

are equivalent to
ΦCΦT = CJ

ΦTCΦ = CJ

Therefore,
ΦΦ−TCΦ−1ΦT = C

ΦΦ−T (CJ)Φ−1ΦT = CJ

So Φ−1ΦT ∈ O(C) ∩O(CJ) = {± Id} (A.9) and we have Φ = ±ΦT . �

Lemma A.11. If there exists Φ ∈ Sym(n,K) such that

sgn(lw)ΦCΦ = CJ

then this Φ is unique up to sign.

Proof. We assume lw > 0. The case lw < 0 is similar. Assume, there are
two Φ,Ψ ∈ Sym(n,K) such that

ΦCΦ = ΨCΨ = CJ

Then we have
ΨΦ−1CΦ−1Ψ = C

ΨΦ−1(CJ)Φ−1Ψ = CJ

So Φ−1Ψ ∈ O(C) ∩O(CJ) = {± Id} and we have Φ = ±Ψ. �

Lemma A.12. There exists Φ ∈ Sym(n,K) such that

sgn(lw)ΦCΦ = CJ

Φ = ±



0 0 . . . 0
√
|l|

0 0 . . .
√
|l| x1

0 0 . . . x1 x2

. . .

0
√
|l| . . . xn−2 xn−1√

|l| x1 . . . xn−1 xn


where xi are some rational functions in

√
|l|.

Proof. Put this matrix in the equation ΦCΦ = CJ and calculate successively
all coefficients. �

Remark A.13. Φ is defined up to sign. To make the choice of Φ unique, we
take plus sign in case l > 0 or w > 0. Otherwise, we take minus sign. At this
point, it does not really matter how we choose the sign. It will be important
later when we will consider degenerate representations.

A.2. About classification of symmetric maps.
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A.2.1. Over algebraic closed fields. In this section we want to show that
over algebraic closed field K for every symmetric (with respect to some non-
degenerate form b) linear map f there is an orthogonal basis e such that

[f ]e =


J1 0 . . . 0 0
0 J2 . . . 0 0

. . .
0 0 . . . 0 Jk

 ,

where Jk is a nk × nk Jordan block corresponding to the eigenvalue λk and

[b]e =


I∗1 0 . . . 0 0
0 I∗2 . . . 0 0

. . .
0 0 . . . 0 I∗k

 ,

where

I∗s =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


ns×ns

.

By the theorem of Jordan we already know that there exists a basis e
such that [f ]e has a necessary form. We want to show that we can correct
this basis to another basis e′ such that [b]e′ is of the form as above and
[f ]e = [f ]e′ .

Lemma A.14. Blocks with different eigenvalues are orthogonal.

Proof. The proof is identically to the proof of lemma A.3 for eigenvectors. We
have just to do the same by induction for all pairs of generalized eigenvectors
of corresponding blocks. �

As we also have seen, if we restrict the form b to each Jordan block, then,
if this form is not degenerate, then the basis of this block can be chosen so
that this restriction of b has a form:

I∗ =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0

 .

Such blocks we will call “non-degenerate”.
Therefore, we have to prove two things:
1. If the restriction of b to some block is degenerate, then there exists

another block with the same eigenvalue. Using this block we will correct the
“degenerate” block to “non-degenerate” block.

2. We can orthogonalize non-degenerate blocks with the same eigenvalue.

Lemma A.15. Let Js be a block, m := ns = dim(Js), λ is its eigenvalue.
v = (v1, . . . , vm) is corresponding subbasis of e for this block, V = Span(v).
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Let Jp be a block with the same eigenvalue λ, l := np = dim(Jp), w =
(w1, . . . , wl) corresponding subbasis of e, W = Span(w).

If m > l, then

Bv,w := (b(vi, wj)) =



0 0 . . . 0 0
0 0 . . . 0 0

. . .
0 0 . . . 0 c1

0 0 . . . c1 c2

. . .
c1 c2 . . . cn−1 cn


.

If m < l, then

Bv,w := (b(vi, wj)) =


0 0 . . . 0 0 . . . 0 c1

0 0 . . . 0 0 . . . c1 c2

. . . . . .
0 0 . . . c1 c2 . . . cm−1 cm

 .

Proof. We proof the first case. The second is analogous. We use

b(f(vi), wj) = b(vi, f(wj)) = λb(vi, wj) + b(vi, wj−1)

b(f(vi), wj) = λb(vi, wj) + b(vi−1, wj)

We get b(vi, wj−1) = b(vi−1, wj) for all i = 1, ..m, j = 1, . . . , l and b(vj , w1) =
0 for all j = 1, . . . ,m. So we get (b(vi, wj)) as above inductively. �

Lemma A.16. Let Js be a block, m := ns, λ is its eigenvalue. v =
(v1, . . . , vm) is corresponding subbasis of e for this block, V = Span(v).
Let Jp be a block with the same eigenvalue λ, l := np, w = (w1, . . . , wl)
corresponding subbasis of e, W = Span(w).

Then u = v + wT is a basis of Jordan block with the same eigenvalue λ
if and only if T has the following form: for m ≥ l

T =



c1 c2 . . . cm−1 cm
0 c1 . . . cm−2 cm−1

. . .
0 0 . . . c1 c2

0 0 . . . 0 c1

0 0 . . . 0 0
. . .

0 0 . . . 0 0


for m ≤ l

T =


0 . . . 0 c1 c2 . . . cl−1 cl
0 . . . 0 0 c1 . . . cl−2 cl−1

. . .
0 . . . 0 0 0 . . . c1 c2

0 . . . 0 0 0 . . . 0 c1


Matrices of this form we will call diagonal upper triangular.



84 D. ALESSANDRINI, O. GUICHARD, E. ROGOZINNIKOV, AND A. WIENHARD

Proof. For every basis u = (u1, . . . , us) we denote by ∂u := (0, u1, . . . , us−1).
Then for each basis of Jordan block we have f(u) = λu + ∂u. The map ∂
in basis u is given by matrix

P := [∂]u =


0 1 . . . 0 0
0 0 . . . 0 0

. . .
0 0 . . . 0 1
0 0 . . . 0 0


Now we want f(u) = λu + ∂u for u = v + wT . That means

f(v+wT ) = f(v)+f(w)T = λv+∂v+(λw+∂w)T = λ(v+wT )+∂v+(∂w)T =

= λu + ∂u + (∂w)T − ∂(wT ).

That means, u is Jordan basis if and only if PT = TP .
If T = (tij) then PT = (ti−1,j), TP = (ti,j+1) (to make this notation

completely correct, we assume here tij = 0 for i > l or j > m or for i, j < 1).
That means, ti−1,j = ti,j+1 and t1j = 0 for j > 1, tim = 0 for i < m.
Therefore, T has a necessary form. �

Lemma A.17. Let Js be a block, m := ns, λ is its eigenvalue. v =
(v1, . . . , vm) is corresponding subbasis of e for this block, V = Span(v). Let
bV be degenerate. Then there exists another block Jp with the same eigenvalue
λ, l := np, w = (w1, . . . , wl) corresponding subbasis of e, W = Span(w) and
bV⊕W is not degenerate.

Moreover, there exists another basis u = (u1, . . . , um) such that U =
Span(u) is invariant by f , U ⊕ W = V ⊕ W , [f |U ]u = Js and bU is not
degenerate.

Proof. Because of

b(f(vi), vj) = b(vi, f(vj)) = λb(vi, vj) + b(vi, vj−1)

b(f(vi), vj) = λb(vi, vj) + b(vi−1, vj)

we get b(vi, vj−1) = b(vi−1, vj) for all i, j = 1, . . . ,m and b(v1, vj) = 0 for all
j = 1, . . . ,m− 1. Therefore,

Bv := [b|V ]v =


0 0 . . . 0 a1

0 0 . . . a1 a2

. . .
0 a1 . . . an−2 an−1

a1 a2 . . . an−1 an


This matrix is degenerate, that means that a1 = 0 and v1 is orthogonal to
the whole block. v1 is also orthogonal to all blocks with eigenvalues different
form λ. But the form b is not degenerate. Therefore, there exists another
block Jp with the eigenvalue λ and basis w = (w1, . . . , wl) and b(v1, wl) 6= 0
because by the lemma A.15 b(v1, wr) 6= 0 for all r < l. We can assume that
m ≥ l, otherwise it is easy to see by considering of determinant of b that the
form is degenerate on the whole space.
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Let u = v + wT for some diagonal upper triangular T . Then b|U
is non-degenerate if and only if b(u1, um) 6= 0. b(u1, um) = b(v1, vm) +
2b(v1, (wT )m) + b((wT )1, (wT )m) = 0 + 2(Bv,wT )1m + (T TBwT )1m 6= 0

If m > l or m = l and Bw degenerate, then T TBwT is also degenerate
and (T TBwT )1m = 0. In this case we can T = (0| Id). Then (Bv,wT )1m =
b(v1, wl) 6= 0.

Otherwise, we can take T = c Id then

2(Bv,wT )1m + (T TBwT )1m = cb(v1, wm) + c2b(w1, wm) 6= 0

for c 6= − b(v1,wm)
b(w1,wm) .

�

Using last lemma we can always assume that the basis is chosen so that all
Jordan blocks are non degenerate with respect to b. Now we want to correct
this basis so that different blocks are orthogonal.

Lemma A.18. Let Js is a non degenerate with respect to b Jordan block,
m := ns, λ is its eigenvalue. v = (v1, . . . , vm) is corresponding subbasis of e
for this block, V = Span(v).

Let Jp be another block with the same eigenvalue λ, l := np, w =
(w1, . . . , wl) corresponding subbasis of e, W = Span(w). We assume m ≥ l.

Then there exists a diagonal upper triangular matrix T such that u = w+
vT is a basis of Jordan block which is orthogonal to Js and V ⊕W = U ⊕W

Proof. That u = w+vT is a basis of Jordan block, we already know by the
lemma A.16. We want orthogonality. That means

0 = b(v,w + vT ) = b(v,w) + b(v,vT ) = Bv,w +BvT

Because Bv is not degenerate, we have

T = Bv,wB
−1
v

This is a product of two diagonal upper triangular matrices, which is diagonal
upper triangular. The new block is not degenerate because, otherwise, the
form would be degenerate on V ⊕ U , but this is not the case. �

Corollary A.19. If we have many blocks with the same eigenvalue, then
we do the process as in previous lemma successively as in Gram–Schmidt
orthogonalization.

A.2.2. Case K = R with real eigenvalues. Because R is not algebraic closed,
we have to take care by the process which we did in the case K algebraic
closed.

First, we have to assume that all eigenvalues of f are real, otherwise the
theorem of Jordan does not guarantee us that the Jordan basis exists.

Theorem A.20. For every symmetric with respect to some non-degenerate
form b linear map f with real eigenvalues there is an orthogonal basis e such
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that

[f ]e =


J1 0 . . . 0 0
0 J2 . . . 0 0

. . .
0 0 . . . 0 Jk


where Jk is a nk × nk Jordan block corresponding to the eigenvalue λk and

[b]e =


σ1I
∗
1 0 . . . 0 0

0 σ2I
∗
2 . . . 0 0

. . .
0 0 . . . 0 σkI

∗
k


where σi = ±1 and

I∗s =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


ns×ns

Moreover,

sgn(I∗s ) =

{
0 , for ns even
1 , for ns odd

and, therefore,

sgn(b) =
k∑
i=1

σi sgn(I∗i ) =
∑

{i|ni is odd}

σi

Proof. In this case, we only have to prove that in each Jordan block the basis
can be chosen so that the restriction of b on this block is represented by a
matrix ±I∗.

To do this, first, we consider a complexification of f and find a complex
basis (vi)

n
i=1 for a fixed chosen Jordan block n×n as in the previous section.

That means
f(vi) = λvi + vi+1

b(vi, vj) = δi+j,n+1.

If we conjugate these equalities, we get (since λ ∈ R):

f(v̄i) = λv̄i + v̄i+1

b(v̄i, v̄j) = δi+j,n+1.

Case 1. (vi) and (v̄i) define bases of different complex Jordan blocks.
Therefore vi and v̄i are not collinear and there exist unique collections of
non-zero vectors (ui), (wi) such that

vi =
ui + iwi√

2
.

Therefore, (ui) and (wi) define reals bases of two different Jordan blocks.
We can correct these bases so that they are orthogonal and the restriction
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of b on corresponding subspaces is represented by a matrix ±I∗ [see lemma
A.6].

Case 2. (vi) and (v̄i) define bases of the same complex Jordan block.
Because of uniqueness of basis v̄i = ±vi.

Case 2.1. vi = v̄i. That means, v = (vi) is a real basis of the chosen
Jordan block with [b|SpanR(v)]v = I∗.

Case 2.2. vi = −v̄i = iwi. That means, w = (wi) is a real basis basis of
the chosen Jordan block with [b|SpanR(w)]w = −I∗. �

A.2.3. Case K = R with complex eigenvalues. Generalized Jordan blocks.

Remark A.21. For some technical reasons, we need some linear order on
C. It does not really matter which one, but to make some constructions
unique we have to fix one. We will use the following order: we say z > z′ if
Re(z) > Re(z′) or Re(z) = Re(z′) and Im(z) > Im(z′).

If the linear map f have a complex not real eigenvalue λ = a+ ib then it
has an eigenvalue λ̄ = a− ib as well because the characteristic polynomial is
real. We consider some Jordan block J with eigenvalue λ of the size m×m.
Then we have automatically a Jordan block for λ̄. Moreover, these both
blocks have the same size because if

f(vj) = λvj + vj−1

then

f(v̄j) = λ̄v̄j + v̄j−1

where (vj) is a basis of the block J . So (v̄j) is a basis of another Jordan
block with eigenvalue λ̄ which we denote by J̄ . We denote

vj =
uj + iwj√

2

We can also assume b(vj , vk) = b(v̄j , v̄k) = δj+k,m+1

We consider another basis for pair of blocks (J, J̄):

uj =
vj + v̄j√

2
, wj =

vj − v̄j
i
√

2

It is easy to see that

f(uj) = auj − bwj + uj−1

f(wj) = buj + awj + wj−1

Because of the discussion above we can assume that all complex Jordan
blocks are orthogonal to each other. Therefore,

b(uj , uk) = −b(wj , wk) = b(vj , vk) = δj+k,m+1
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So we get that in the real basis (u1, w1, . . . , um, wm) the pair of blocks (J, J̄)
is represented by the following matrix

K =



a b 1 0 . . . 0 0
−b a 0 1 . . . 0 0
0 0 a b . . . 0 0
0 0 −b a . . . 0 0

. . .
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
0 0 0 0 . . . a b
0 0 0 0 . . . −b a


2m×2m

which we will call generalized Jordan block. The restriction of b on
Span(u1, w1, . . . , um, wm) have the form I2∗

2m, where

I2∗
2m =



0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 −1

. . .
0 0 1 0 . . . 0 0
0 0 0 −1 . . . 0 0
1 0 0 0 . . . 0 0
0 −1 0 0 . . . 0 0


2m×2m

This matrix has signature
sgn(I2∗

2m) = 0

Moreover, because all complex Jordan blocks are orthogonal, this generalized
block is orthogonal to other blocks.

Corollary A.22. If f consists only on one generalized Jordan block then the
basis above is unique up to simultaneous multiplication of all basis vectors
with −1. The proof is identical to the proof of A.8

Lemma A.23. There exists unique up to sign Φ ∈ Sym(n,R) such that

ΦI2∗Φ = I2∗K

Φ =



0 0 0 0 . . . c d
0 0 0 0 . . . d −c
0 0 0 0 . . . ∗ ∗
0 0 0 0 . . . ∗ ∗

. . .
0 0 c d . . . ∗ ∗
0 0 d −c . . . ∗ ∗
c d ∗ ∗ . . . ∗ ∗
d −c ∗ ∗ . . . ∗ ∗


where (c+ id)2 = a+ ib and ∗ are some rational functions in c, d.

Proof. Similar to A.12 �
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Remark A.24. The pair (c, d) is defined up to sign. To make Φ unique we
choose (c, d) so that c+ id is the biggest square root of a+ ib.

A.3. Standard form of a pair of bilinear forms. So we can summarize
that for each bilinear form b and each linear operator f which is symmetric
with respect to b there exists a basis e such that

[b]e =

I∗1 0 0
0 −I∗2 0
0 0 I2∗

 , [f ]e =

J1 0 0
0 J2 0
0 0 K


where for r = 1, 2

I∗r =


I∗1r 0 . . . 0 0
0 I∗2r . . . 0 0

. . .
0 0 . . . 0 I∗krr

 , Jr =


J1r 0 . . . 0 0
0 J2r . . . 0 0

. . .
0 0 . . . 0 Jkrr



I2∗ =


I2∗

1 0 . . . 0 0
0 I2∗

2 . . . 0 0
. . .

0 0 . . . 0 I2∗
s

 , K =


K1 0 . . . 0 0
0 K2 . . . 0 0

. . .
0 0 . . . 0 Ks


where nir := dim(I∗ir) = dim(Jir), mj := dim(I2∗

j ) = dim(Kj).

Definition A.25 (Order on blocks). For two (generalized) Jordan blocks
J with eigenvalue l and J ′ with eigenvalue l′ we will say that J > J ′ if
dim J > dim J ′ or dim J = dim J ′ and l > l′ (for generalized blocks we
compare complex numbers using the order defined earlier).

Definition A.26 (Standard form of a pair of bilinear forms). If the basis e
is chosen as above and blocks in J1, J2, K are in order of decreasing then
we will say that pair of forms b1 = b and b2 = b ◦ f is in the standard form.
We will use the following notation:

X(b1, b2) = (J1,J2,K)

X0(b1, b2) = [f ]e, X1(b1, b2) = [b1]e, X2(b1, b2) = [b2]e

Remark A.27. Because

sgn(I∗) =

{
0 , for dim I∗ even
1 , for dim I∗ odd , sgn(I2∗) = 0

we get
sgn(b) = #{i| dim I∗i1 is odd} −#{i|dim I∗i2 is odd}

Remark A.28. The standard form is unique. The basis, in which some pais
of forms has standard form, is unique up to simultaneous sign change of
basis vectors which correspond to the some (generalized) Jordan block if
and only if all (generalized) blocks are distinct, i.e. if two blocks have the
same eigenvalue then their sizes are different.
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Remark A.29. X(b1, b2) defines X0(b1, b2), X1(b1, b2), X2(b1, b2) uniquely
and defines b1, b2 uniquely up to change of basis.

X0(b1, b2) = diag(X(b1, b2))

X0(b1, b2) = (X1(b1, b2))−1X2(b1, b2)

We define the signature

sgn(X(b1, b2)) := sgn(b1)

A.4. Back transformation.

Definition A.30. We will say that matrix H is consistent to the pair of
forms (b1, b2), if

H = diag(H1, H2, H3)

Hk = diag(H1k, . . . ,Hkrk)

and dimHij = dim Jij for j = 1, 2, dimHi3 = dimKi for all possible i.

Definition A.31. Let Y = diag(Y1, . . . , Ys), σ ∈ Sym({1, . . . , s}). The
matrix

Tσ =

T11 . . . T1s

. . .
Ts1 . . . T ss


is called block permutation matrix for Y if Ti,σ(i) = IddimYi for all i and
Tij = 0 for all other (i, j).

Remark A.32. It is easy to see that

T Tσ diag(Z1, . . . , Zs)T = diag(Zσ(1), . . . , Zσ(Zs))

for all diag(Z1, . . . , Zs) such that dimZi = dimYi for all i.

Definition A.33 (Minimal ordering matrix). Let

Y = diag(Y1, . . . , Ys), Z = diag(Z1, . . . , Zs)

and dimYi = dimZi for all i ∈ {1, . . . , s}. Moreover, assume

Yi ∈ {I∗r ,−I∗r , I2∗
r | r ∈ N}

and Zi is a Jordan block for all i ∈ {1, . . . , s} such that Yi = ±I∗r and Zi is
a generalized Jordan block for all i ∈ {1, . . . , s} such that Yi = I2∗

r .
We will say that a block permutation matrix T = Tσ for Y is minimal

ordering matrix for (Y,Z) if
• (Y ′, Y ′Z ′) := (T TY T, T TY ZT ) is the standard form for some pair
of bilinear forms, where

Y ′ = diag(Yσ(1), . . . , Yσ(s))

Z ′ = diag(Zσ(1), . . . , Zσ(s))

• if YiZi = YjZj for i < j then σ(i) < σ(j).
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Remark A.34. For fixed pair (Y,Z) as above the minimal ordering matrix is
unique because is well-defined by the corresponding permutation σ which is
unique.

Proposition A.35. There exist consistent to (b1, b2) matrix
Φ ∈ Sym(n,R) and the (unique) minimal ordering matrix T for
(ΦX2(b1, b2)−1Φ,ΦX1(b1, b2)Φ) such that

T TΦX1(b1, b2)ΦT = X2(b∗2, b
∗
1) =: X̃2(b1, b2)

T TΦX2(b1, b2)−1ΦT = X1(b∗2, b
∗
1) =: X̃1(b1, b2).

We will call this transformation back transformation.

Proof. It follows from A.12 and A.23. We take Φ = diag(Φ1, . . . ,Φp)
where Φi are from A.12 or A.23 for corresponding pair of blocks of
(X1(b1, b2), X2(b1, b2)). After that we do a minimal ordering. �

Remark A.36. In the previous proposition, Φ is unique up to sign of each
block. But as we already have seen, this sign can be chosen in a canonical
way. So we can assume that Φ and T are well defined by (b1, b2).

Remark A.37. The direct calculation shows that the back transformation
applied twice gives the identity map.

Corollary A.38. The last proposition can be reformulated in the following
way:

Let (b1, b2) is a pair of bilinear forms on a vector space V and in a basis
e:

[b1]e = X1(b1, b2), [b2]e = X2(b1, b2)

We consider a pair of bilinear forms (b∗2, b
∗
1) on the dual space V ∗. In the

dual basis f :
[b1]f = X1(b1, b2)−1, [b2]f = X2(b1, b2)−1

The change of basis on V given by a matrix Φ−1T−T : e 7→ e′ induce change
of basis on V ∗ by a matrix ΦT : f 7→ f ′ so that

[b∗1]f ′ = X2(b∗2, b
∗
1), [b∗2]f ′ = X1(b∗2, b

∗
1)

This change-of-basis is determined by X(b1, b2). We denote this transfor-
mation on bases of V by σX(b1,b2), the corresponding dual transformation of
bases of V ∗ is denoted by σ∗X(b1,b2). This transformation will be used to define
the basis associated to the opposite oriented edge.

A.5. (p, q)-shape transformation. Let

n := (n1, . . . , nk1), m := (m1, . . . ,mk2), r := (r1, . . . , rk3)

be three decreasing sequences of natural numbers.

Inmr := diag(I∗n1
, . . . , I∗nk1

,−I∗m1
, . . . ,−I∗mk2

, I2∗
r1 , . . . , I

2∗
rk3

)
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We consider this matrix as a matrix of some bilinear form. Let (p, q) be the
signature of this form. We fix one matrix Pnmr such that

P TnmrIpqPnmr = Inmr

and the corresponding P -matrix for Ipq is Id.

Definition A.39. We denote by Ppq the set of all matrices Pnmr such that
Inmr has signature (p, q).

Definition A.40. Let (b1, b2) be a pair of bilinear forms and b1 has signature
(p, q). We denote by Pb1b2 the corresponding Pnmr as above such that

X1(b1, b2) = P Tb1b2IpqPb1b2

Definition A.41. Let X = X(b1, b2) for some pair of forms (b1, b2). Then
b1 has signature (p, q). We denote by PX the corresponding Pb1b2 as above
such that

X1 = X1(b1, b2) = P TXIpqPX

Remark A.42. As we have seen before, X(b1, b2) defines X0(b1, b2),
X1(b1, b2), X2(b1, b2). So if we know X(b1, b2), we do not need any in-
formation about (b1, b2). Therefore, sometimes we will write just X instead
of X(b1, b2) and also X0, X1, X2 instead of X0(b1, b2), X1(b1, b2), X2(b1, b2)
(and correspondent expressions with )̃ if forms (b1, b2) are not important.
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